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ABSTRACT

Being a fundamental and challenging research topic, influential
user identification has attracted much attention with the rapid growth
of mobile social networks. Previous studies either focus on rel-
atively stable network structure, or need fairly large information
overhead in achieving global maxima. In tackling the dynamic
topologies, we propose an influential user identification scheme
fully exploiting the active mobile users, where the stable state prop-
erty is leveraged under information potential construction scheme.
We present an efficient routing scheme in reaching the global max-
ima without relying on specific routing protocols. We validate our
scheme with both synthetic and real-world mobility traces. The
experimental results show that, the proposed scheme achieves con-
siderable performance on influential user identification and route
construction, while bringing forth less overhead.

1. INTRODUCTION

The proliferation of mobile devices (i.e., smart phones, tablets,
etc.) and WiFi access points gives rise to a new frontier for mo-
bile social networks, where mobile users contact, interact and make
friends with each other using their wireless devices. In mobile so-
cial networks, influential user identification could be more appeal-
ing and challenging, since it is a fundamental research issue in e.g.,
the recommendation system [1], and information propagation anal-
ysis system [2].

Previous studies mainly focus on influential user identification
in Internet [3] [4] , where network topologies are relatively stable,
and the main metrics include network degree, closeness, between-
ness, etc. [5]. With respect to mobile social networks, most of the
studies [6] [7] can identify influential users, leveraging mobility
patterns and social relationships, with the cost of excessive infor-
mation overhead, which is not neglectable, especially for mobile
users.

In this paper, we investigate the influential user identification
problem in mobile social networks. Different from previous stud-
ies, we focus on utilizing the user mobility while requiring little
network overhead. Our work is inspired by information potential
scheme proposed by Loukas et al. [8] [9]. Information potential
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maps local information (e.g., node degree) to a more meaningful
value within the global context.

To achieve this, we have to address two major challenges when
integrating this distributed technique into influence measurement
schemes of mobile social networks. First, the connectivity of mo-
bile social networks is more dynamic than that of traditional social
networks due to users’ mobility. The proposed solution should be
tailored towards the specific connectivity properties of mobile so-
cial networks. Second, the communication and computation over-
head should be minimized for energy-constrained mobile devices.
Specifically, the information overhead incurred by the information
potential computation should be lightweight and tolerable to user
mobility.

In this work, we exploit the user mobility as well as its social
relationship. The insight is that, under the information potential
framework, the active mobile users will help propagate information
to other communities effectively, which also impose great influence
to mobile networks. In accounting this character, we’ve proved the
convergence condition in information potential construction and
propagation. Then, we incorporate the user mobility into the in-
fluential user identification procedure, leveraging the stable state
property. We further propose a method to shape the influence land-
scape effectively, and an efficient route construction scheme lead-
ing to local maxima efficiently.

The contributions of this work are summarized as follows:

e We propose a distributed algorithm to compute mobile users’
influence in mobile social networks. The presented algo-
rithm has a number of desirable properties such as the stable
state and the unimodality.

e We give a method to select the influential users based on
the stable state of influence computed through our algorithm.
Meanwhile, we construct a route that a mobile user can reach
the influential users locally or the most influential user glob-
ally.

e We evaluate our algorithms and methods through simulations
based on both a synthetic random-walk based trace and a
real-world mobility trace [10]. We effectively construct the
influence landscape and the influence-ascent route based on
real-world mobility trace.

The rest of the paper is organized as follows. Section 2 describes
the network model and the problem statement. We give the de-
sign of proposed algorithm and present the solution of the influ-
ential user identification problem in Section 3 and 4, respectively.
Section 5 shows evaluation results. Related work is discussed in
Section 6. Finally, we conclude our work in Section 7.
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Figure 1: A sequence of dynamic network snapshots which are
changing over time.

2. NETWORK MODEL AND PROBLEM STUD-

IED

In this section, we describe the network model and the problem
of influential user identification.

2.1 Network Model and Notations

Basic notations: Assuming that there are N mobile nodes in set
V = {ni,n2, -+ ,nn}. Each node n;,1 < ¢ < N, maintains a
neighbor-node set C(n;) including itself and its current neighbors,
i.e., C(n;) ={n; : n; ~nj or n; = n;}, where n; ~ n; denotes
that two nodes n; and n; are neighbors. Here, two nodes n; and
n; are considered to be neighbors if they fall into the transmission
range of each other. Notice that C(n;) may change dynamically
due to the mobility of nodes. We further define the degree of a
node n; (denoted by d(n;)) is the cardinality of its neighbor-node
set, i.e., d(n;) = |C(n;)|. For simplicity, we use ¢ to denote node
n; when no confusion rises.

Let G = (V, E) be an undirected unweighted graph, where V'
contains all N mobile nodes and E is the set of connects. We then
define several matrix notations of the graph G. Let A be the n X n
symmetric adjacency matrix of graph G, and it is given by

A — 1 ifi~jori=j
71 0 otherwise

Let D be the n x n diagonal degree matrix with D;; = d(i), and
correspondingly the inverse degree matrix D, Y=1/d(i),VieV
and zero otherwise. With adjacency matrix A and diagonal degree
matrix D, the transition matrix of random walk P can be given by
P = D~ ! A according to the study in [11].

Dynamic network model: A mobile social network is intrin-
sically a highly dynamic network, which can be modeled as the
specific time-varying graph [12]. Let G; = (V4, E) be a time-
varying network snapshot at time ¢ and Go = (Vp, Eo) be the
original input network. Correspondingly, a dynamic network can
be defined as a sequence of network snapshots changing over time:
G = (Go,G1,G2,...). As demonstrated in Figure 1, there is a
sequence of network snapshots at different times.

Based on above model, we analyze the proposed algorithm in
Section 3, especially its desiable properties which be exploited to
identify the influential users in Section 4.

2.2 Problem Studied

We try to address the following two questions: (i) How do we
compute mobile users’ influence distributedly? And (ii) how do
we effectively select the influential users and efficiently construct a
route to reach them?

Intuitively, a mobile user’s influence is simply similar to his/her
degree-based centrality in the mobile social topology. It is sim-
ple to compute the user centrality if we acquire the global topol-
ogy through centralized solutions. However, centralized solutions
suffer from the high computational complexity, and hardly capture
the real-time topology of mobile social networks. We adopt a dis-
tributed algorithm to dynamically compute user’s influence. We
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use the spirit of “information potential" rather than the degree itself
to represent the user’s influence. With this setup, we succeed to
compute the users’ influence and further choose the set containing
several influential users. Additionally, constructing a route to reach
these influential users is necessary. We introduce the influence-
ascent to represent the largest influence increment among the user’s
local neighbors, and the user further reaches the local influential
user according to these influence-ascents.

Formally, given a dynamic network G = (Go, G1, G2, ...), where
Gl is the input network and G1, G2, ... are network snapshots
obtained through a collection of network topology changing over
time. The basic problem is to cumulatively compute the influence
of each user in different network snapshots. Letd,y : V — R
be functions over V' that assign a real value to each user. d(7) is
the degree obtained by each user ¢ € V in a dynamic network G.
Function y is the user’s instant influence derived from d, and we
will present this function in Section 3. The first objective is to effi-
ciently and iteratively compute y through a distributed method until
it converges to a stable state m,. Based on the stable state of influ-
ence of each user, the second objective is to find the influential user
set U, which contains several influential users. Finally, we aim to
construct a route to reach the influential users.

3. INFLUENCE COMPUTATION

In this section, as the first step to identify the influential users,
we compute the mobile users’ influence through a distributed algo-
rithm. We then describe some desirable properties of the proposed
algorithm. In particular, we analyze the convergence property in a
dynamic and time-varying network.

3.1 The Distributed Algorithm

The proposed distributed algorithm is based on the constrained-
averaging algorithm proposed by Andreas Loukas ef al. [8] and is
to compute a user’s influence in mobile social networks.

Specifically, our algorithm differs from this previous study in the
following aspects. First, we directly make the user degree be infor-
mation computed by each user. A user’s degree at different network
snapshot can be obtained through mobile device discovery, i.e., the
smartphone periodically discovers its neighbors within its commu-
nication range during a specific time interval. Second, we consider
that the user’s influence of snapshot G is determined by that of the
previous snapshot G¢—1. That means the influence computation is
a cumulative process in which the converged influence increases
with the evolution of network. The rationale behind this lies in the
connectivity properties of mobile social networks, where users are
highly mobile and the connectivity are changing over time [13],
such that the user could independently aggregate its connections
locally for computing its influence globally.

A mobile user ¢’s influence y (1) is given by:

i) =(1-¢) 3 % T (i) 0
)

jec
where the parameter ¢ represents the inhibiting factor that inhibits
or stimulates diffusion and controls the transition from global to
local. When ¢ = 0, the equation is a pure diffusion process leading
to uniform y and realizes a global view. On the contrary, when
¢ = 1, the influence only depends on a local one-hop view.

The iterative computation of user influence works as follows.
During each time slot, user ¢ exchanges the influence y(¢) with
their neighbors through mobile device discovery and information
exchange. During each round of iterative computation, the user re-
ceives neighbors’ information. Then, the user updates its neighbor-



user set and degree, respectively. Further, the user updates its in-
fluence to the weighted sum of their locally degree d(7) and of the
average over the most recent influence values, including its own (as
Equation 1 shows). The algorithm runs continuously adapting to
any network dynamics, and if no dynamics are expected, termina-
tion is locally decided by comparing the difference of the influence
at consecutive rounds against some error threshold.

3.2 Algorithmic Properties

We are able to analyze the algorithm properties by leveraging
the spectral graph theory [11] and random walks on graphs [14].
Based on [8], our algorithm satisfies the following two desirable
properties:

e The Stable State: The proposed algorithm converges to the
stable state of the influence, denoted as m,. According to
the model described in Section II and the theory of random
walks on graphs, the graph based on P is time-homogeneous,
irreducible, and aperiodic. For irreducible, aperiodic, time-
homogeneous graphs, it is well known that a unique station-
ary distribution state exists and that the graph converges to
this distribution from any initial state [11]. As a result, the
final influence 7, of each user is the converged influence
through the iteratively distributed computation. (It is worth
noting that the literature [8] has presented the convergence
analysis of computing information potentials in a static net-
work, as well as a dynamic but time-invariant network.)

The Unimodality Property: A function y is unimodal if and
only if it has a single extremum at user ¢, and for each user,
at least one path to user ¢ exists on which the values of y
are monotonic. Our method can provide the influence’s uni-
modality property, which guarantees a single extremum and
allows us to combine the influence computed in different ar-
eas with chemotactic search, so that the user can indepen-
dently navigate towards the most influential user.

4. IDENTIFYING INFLUENTIAL USERS

So far we have computed each user’s influence and analyzed the
algorithm convergence for dynamic and time-varying networks. In
this section, we present a method to effectively identify and select
the influential users, and efficiently construct a route in which each
user can travel to its local influential user.

4.1 Identifying Influential Users

Taking the mobility and activeness of mobile users into consid-
eration, we define the influential user on a graph as follows:

DEFINITION 1. The influential users on a graph are the most
[frequently visited nodes among their local neighbors by random
walks on the graph.

As previous section mentions, we obtain the distribution of the
user’s influence which converges to a stationary distribution state.
Then, we capture these local maxima as influential users and fur-
ther shape an influence landscape. Recalling the previous influence
computation, we obtain each user’s influence that has converged to
a stable state m,. The influential user s € C(¢) has the highest m,
among user ¢’s local neighbors (including user ¢ itself).

4.2 Constructing Influence-ascent Route

One of our contributions is to efficiently construct a route to
reach the influential users. The weighting factor of degree is ((1 -

@)P)*. Pk

;18 the probability matrix that a random walker starts
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from user ¢ and reach user j in k steps. The probability is asso-
ciated with the connectivity and the distance between user ¢ and
j. The proposed algorithm assigns higher significance to the infor-
mation (i.e., the user density) residing in nearby users and in users
with higher centrality. Drawing on the experience of Authority-
Ascent Shift presented in [15], we introduce the influence-ascent
A(7), which means the neighboring node of ¢ with the highest ex-
pectation of influence increment by a random walk. It is formulated
as

A(i) = arg max P} (my (i) —

JEC(D)

7y (5)) 2)

THEOREM 1. The influence-ascent procedure for any starting
user is finite and converges to a local maximum (i.e., the influential
user among local neighbors).

PROOF. The influence-ascent of the successive shifts keep strictly
increasing until it reaches a user whose influence-ascent is itself.
So, the length of the sequence is at most the number of local users,
and the final user has the highest 7r,. [

As a result, starting from a user, successive shifts to influence-
ascents progress toward its local maximum. Thus, a mobile user is
able to reach the influential user according to an influence-ascent
route. Compared to the greedy routing, our method exhibits both
the computation-efficiency and energy-efficiency properties.

Algorithm 1 describes the procedure of selecting influential user
set and constructing influence-ascent route. At first, we obtain the
stable state of the influence of each mobile user. We can find the
local influential user whose influence is the local maximum among
local neighbors (line 2). Meanwhile, the influence-ascent value A
is computed according to Equation 2 (line 3), and it will be ex-
ploited to construct the influence-ascent route R (line 6). Besides,
we choose the influential users who hold local maxima into the in-
fluential user set (line 4).

Algorithm 1 Influential User Selection and Influence-Ascent Route
Construction
Input:
The converged influence .
Output:
Influential user set U, and a route R towards the local influen-
tial user.
: for each user 7 do
Find the local maximum, i.e., the highest 7.
Compute the influence-ascent .A(7) according to Equation 2
Add user s € C(2) of local maxima into U, U = U U {s}
end for
: Construct R: associate each user ¢ with its local maximum by
tree traversals along A(%).

A

S. EVALUATION

In this section, we present the evaluation of the proposed method.
We first perform a synthetic random-walk based simulation to vali-
date our algorithm. We then conduct a real-world trace-driven sim-
ulation to show the effects of selecting different parameters. Fi-
nally, based on the chosen real-world mobility trace, we shape the
influence landscape and construct the influence-ascent route.

5.1 Synthetic Random-Walk based Simulation

We perform a synthetic random-walk based simulation to vali-
date our model and the influence computation algorithm. In partic-
ular, we evaluate the convergence property of the proposed method.
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We create a simulator in Matlab to generate the synthetic random-
walk based mobility trace. Each mobile user performs the ran-
dom walk during a fixed time. When two user discover each other
within the communication range, they record this encounter and
exchange the influence computed by the proposed algorithm. The
trace records the user IDs and their corresponding encounters, and
consequently we can capture the random-walk based social graph.
‘We test five network sizes: 10, 30, 50, 70, and 90 users. We evalu-
ate two representative values of the inhibiting factor, i.e., ¢ = 0.5,
and 0.01, respectively.
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Fig. 2a shows the number of rounds until the algorithm con-
verges. We record the rounds when the convergence error becomes
smaller than 0.05. The number of rounds increases with increasing
the network size. In addition, the proposed method incurs an over-
head that is on the order of 1/, which means that the number of
rounds of 10 users translates from about 3 for ¢ = 0.5 to about 150
for ¢ = 0.01. For small networks, it is preferable to choose high
values of ¢.

We plot the message overhead of the proposed scheme with dif-
ferent network sizes in Fig. 2b. The messages consumption in-
creases with increasing the network size. Recalling the proposed
algorithm in Section 3, the mobile user ¢ discovers neighbors and
broadcasts a message which consists of ID ¢ and the computed in-
fluence y(¢) to these neighbors. As a result, the inhibiting factor ¢
does not affect the messages consumption.

5.2 Real-World Trace-Driven Simulation

We introduce a real-world mobility trace, Sassy [10], with which
we use for performance evaluation, and then present the results
from a trace-driven simulator.

To simulate the mobile social network, we utilize a real-world
mobility trace, the Sassy dataset, which records the encounters of
each mobile device. The simulator first generates the encounter
trace of mobile users. A mobile user continuously records its local
encounters. Two mobile users will start exchanging the computed
influence after they know each other through periodic device dis-



Figure 5: An influence-ascent route with a specific influential user,
and ¢ = 0.5.

covery. Each mobile user iteratively computes its influence based
on received information and its local encounters (i.e., its degree)
until the time of this mobility trace is up.

5.2.1 Effects of The Inhibiting Factor ¢

The inhibiting factor ¢ determines the aggregation scope. To
show the effects of selecting different inhibiting factor, we plot
each user’s converged influence for different inhibiting factor ¢ =
0.95,0.5, and 0.01 in Figure 3. The influence differences among
each user for ¢ = 0.01 are smaller than that for ¢ = 0.05 and
¢ = 0.95, which means a global view. These results validate our
algorithm that the scope are controlled from local to global by de-
creasing the inhibiting factor. In addition, if we select the influ-
ential users into the influential user set U, it will be the user sets
{4,8,9,15}, {4,8,15} and {16} for » = 0.95,0.5, and 0.01,
respectively. The number of influential users is varied by choos-
ing different inhibiting factor, and the reason lies in its smoothness
property.

We are able to adjust the inhibiting factor ¢ to control the shape
of the influence landscape. An instance of the social graph of the
Sassy trace is shown in Figure 4a. The maxima are shown as red
squares in the Voronoi cells, as Figure 4b and 4c show. Figure 4c
eliminates two of the three local maxima (influential users) of Fig-
ure 4b, and thus has a single extremum (the most influential user).
Therefore, we can reshape the influence landscape through control-
ling the inhibiting factor.

5.2.2  The Influence-Ascent Route

According to Algorithm 1, we construct the influence-ascent route
based on the Sassy trace. The converged influence of each user is
first computed by the influence computation algorithm. Based on
this, each user compute the influence-ascent according to Equa-
tion 2. We use the first random walk step of £ = 1 [15]. Consider
the network size of the Sassy dataset, we set the inhibiting factor ¢
be 0.5, and thus the influential user set U is {4, 8,15}. Each user
shifts to the local influential user according to his/her influence-
ascent. The construction of the influence-ascent route is shown in
Figure 5. For simplify, we show a trajectory tree in which the root
node is mobile user 4. For a specific user 6, the influence-ascent
route can be obtained as 6 — 9 — 4.

6. RELATED WORK

Influential user identification in mobile social networks: With
the increasing of social networking, some research issues are pro-
posed, such as the influence maximization problem and influential
user identification problem. In traditional social networks, Domin-
gos and Richardson [3] are the first to study the influence maxi-
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mization as an algorithmic problem and propose a probabilistic so-
lution. Kemple et al. [4] formulate the problem of finding a influen-
tial user set as an optimization problem, and propose a Greedy Al-
gorithm guaranteeing (1—1/¢) approximation. More recently, Han
and Srinivasan [7] proposed a distributed and lightweight protocol
for identifying mobile influential users through random walks. Our
solution differentiates their work in the two following aspects: The
proposed approach achieves that mobile users can realize that how
influential they are; We propose an efficient way of navigating to-
wards the influential users.

Information potentials: Information potentials are usually em-
ployed as mediums of information aggregation or discovery per-
taining to sensor networks [16]. Lin et al. [16] construct smooth
harmonic gradients towards sources so that local forwarding guar-
antees their discovery. However, their approaches do not concern
the landscape formation.

Loukas et al. [9] [8] propose a localized mechanism for deter-
mining the information potential on each node based on local pro-
cess and the potential of neighboring nodes. They also analyze the
convergence of information potentials for static networks, and pro-
vide a mechanism for reshaping the information landscape. While
our work is partially motivated by the spirit of information poten-
tials, ours focuses more on the dynamic and time-varying network,
and addresses the influential user identification problem.

7. CONCLUSION

In this paper, we investigate the problem of identifying influ-
ential users in mobile social networks. To compute the mobile
users’ influence, we present a distributed algorithm which is in-
spired by information potentials. In particular, we analyze the al-
gorithm properties with the stable state and the unimodality prop-
erty. Furthermore, considering the mobility and activeness of mo-
bile users, we present a method to effectively identify the influen-
tial users and efficiently construct an influence-ascent route so that
a mobile user can reach the local influential user. We leverage both
the synthetic random-walk based trace and the real-world mobility
trace to evaluate our methods. The simulation results validate that
the presented method brings forth comparably less overhead. Ad-
ditionally, we show the shaping of influence landscape, as well as
the construction of influence-ascent route.

In future work, we want to validate our methods through real-
world implementation and integrate them into the mobile applica-
tions.
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