
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
Department of Informatics

Master of Science Program in Computer Science

Diploma Thesis

The Peer-to-Peer Wireless Network Confederation Protocol:
Design Specification and Performance Analysis

Pantelis A. Frangoudis

Advisor : George C. Polyzos

Athens, June 2005

Abstract

The Peer-to-Peer Wireless Network Confederation (P2PWNC) is a peer-to-peer system that
enables WLAN hotspot roaming based on service reciprocity, motivated by the wide spread
of low cost wireless equipment and broadband access technologies. System users are orga-
nized into small teams (peers) and members of one team can freely access hotspots of other
teams, provided that their team also offers service. The design specification, reference im-
plementation and performance analysis of a protocol for the operation of the P2PWNC
scheme is presented. Two P2PWNC modes are studied; a centralized mode, requiring a
Trusted Central Authority responsible for keeping the history of service provisions in the
system and a decentralized mode, in which team-local modules have replaced the central
authority. Even in the centralized case, though, peers make autonomous decisions and,
thus, the peer-to-peer nature of the system is not compromised.

Acknowledgements

I wish to thank Professor George Polyzos, advisor of my diploma thesis project, for his
guidance during the development of the project. Also, I would like to thank Professor
Costas Courcoubetis for accepting the role of the external advisor. Last but not least, I wish
to thank Elias Efstathiou for his invaluable help in every step of the process of designing,
specifying, implementing and evaluating the P2PWNC protocol.

i

Contents

1 Introduction 1

2 The Peer-to-Peer Wireless Network Confederation 4
2.1 Background . 4
2.2 Overview . 5
2.3 Entities . 6

2.3.1 Teams . 6
2.3.2 Team Members . 7
2.3.3 Access Points . 8
2.3.4 Receipts . 9
2.3.5 Receipt Repository . 9
2.3.6 Trusted Central Authority . 10
2.3.7 Team Server . 10

2.4 Architecture . 11
2.4.1 Centralized Design . 11
2.4.2 Decentralized Design . 12

3 Protocol Specification 13
3.1 P2PWNC Protocol Messages . 13

3.1.1 General . 13
3.1.2 Core Protocol Messages . 14
3.1.3 Augmented BNF for the P2PWNC Protocol 16

3.2 Cryptography . 22
3.2.1 Supported Cryptosystems . 22
3.2.2 Key Generation . 23
3.2.3 RSA Cryptosystem Parameters . 23

ii

3.2.4 Elliptic Curve Cryptosystem Parameters 23
3.3 Data Representation . 24

3.3.1 Public and Private Keys . 24
3.3.2 Digital Signatures . 25
3.3.3 Digital Certificates . 25
3.3.4 Receipts . 26

3.4 Entities and their Behavior . 27
3.4.1 System Parameters . 27
3.4.2 Centralized Case . 28
3.4.3 Decentralized Case . 31

3.5 Message Sequences . 35

4 Reference Implementation 38
4.1 Generic Modules . 38

4.1.1 Protocol Module . 38
4.1.2 Cryptographic Operations . 43
4.1.3 Multithreading . 44

4.2 Receipt Repository . 46
4.2.1 The Role of the Module . 46
4.2.2 Supported Operations . 47
4.2.3 Module Architecture . 48
4.2.4 Decision Algorithms . 61

4.3 Access Point Agent . 64
4.3.1 Architecture . 64
4.3.2 Client Session Handling . 65
4.3.3 Communication with the Receipt Repository 68
4.3.4 Traffic Measurements . 68
4.3.5 Network Access Control . 70

4.4 Mobile User Agent . 72
4.4.1 Operation in the Centralized Case 72
4.4.2 Operation in the Decentralized Case 73

4.5 Trusted Central Authority . 74
4.6 Team Server . 75

iii

5 Performance Evaluation 77
5.1 System Testbed . 77
5.2 Performance Metrics . 78

5.2.1 Time Measurements . 78
5.2.2 Space Measurements . 80

5.3 Cryptographic Operations . 81
5.3.1 Parameters . 81
5.3.2 Measurements . 82

5.4 Maximum Flow Algorithm Performance 85
5.4.1 Running Time Evaluation . 86
5.4.2 Memory Utilization Evaluation 89

6 Future Work and Extensions 92
6.1 Security Considerations . 92
6.2 Implementation Issues . 93
6.3 Deployment Issues . 94
6.4 Evaluation Issues . 95

7 Conclusion 96

References 97

iv

List of Figures

2.1 P2PWNC centralized mode . 11
2.2 P2PWNC decentralized mode . 12

3.1 Client operation in centralized mode . 28
3.2 Access point client session in centralized mode 30
3.3 Client operation in the decentralized operation mode 32
3.4 Client operation in the decentralized operation mode 33
3.5 Team server operation . 34
3.6 Message sequence in the centralized operation mode 36
3.7 Message sequence in the decentralized operation mode 37
3.8 Receipt repository update operation . 37

4.1 Message conversions . 41
4.2 Compact representation of a receipt . 42
4.3 Receipt repository architecture . 49
4.4 Adjacency list representation of receipt graph 58
4.5 Receipt graph segment . 63
4.6 Access point agent modules . 65
4.7 TCA software architecture . 75

5.1 Maximum flow running time on an AMD AthlonXP 2800 87
5.2 Maximum flow running time on Linksys WRT54GS 88
5.3 Maxflow memory usage on Linksys WRT54GS 91

v

List of Tables

3.1 Valid ECC curves in the P2PWNC protocol 24

5.1 Platform specifications . 78
5.2 Cryptographic operation performance . 83
5.3 Key size ratio . 83
5.4 Cryptographic operations running time ratios 84

vi

1 Introduction

Nowadays, wide deployment of Wireless LAN (WLAN) technologies is taking place. The
cost of equipment needed to connect users in a WLAN has degraded rapidly and the effort
necessary for setting up and configuring such a system is minimal. Also, WLAN technolo-
gies operate in unlicenced radio frequencies. Thus, the WLAN market share that residential
users occupy has increased.

Although wireless coverage is increasing, there is no unified way of accessing these
networks. The development of WLAN market has not followed the traditional marketing
models of other telecommunication technologies, such as cellular telephony. Instead, it has
grown in an unplanned manner and this is the reason why there is no established WLAN
access model.

What is more, the spread of WLAN technology was not initiated by large telecom orga-
nizations. Rather, due to the low cost of equipment, individuals, universities and the open
source community quickly adopted it and formed a large, uncontrolled by large operators,
user base.

Together with the proliferation of broadband access technologies, such as xDSL, the
spread of WLAN hotspots forms the ideal breeding ground for the provision of ubiquitous
internet access. However, network heterogeneity and limitations imposed by the wireless
network operators hinder the development of such services.

In order to provide ubiquitous internet access, a scheme providing seamless wireless
LAN roaming is necessary. Despite the fact that the technology for sharing wireless inter-
net is available, there is no established model providing such a service. Numerous solutions
have been proposed addressing this issue. However, none of them has had global accep-
tance for various reasons. Perhaps, the most important of them was the lack of established
WLAN roaming standards as well as the fact that the user base of WLAN technology has
evolved in an unpredictable manner. The result is a fragmented market containing com-
mercial hotspot operators, free citywide networks [1] [9], non-commercial operators such

1

as university campuses and individual household access points.
From the above discussion, it occurs that universal WLAN roaming capabilities are ex-

tremely limited, considering the advances in the area of wireless networking. Obviously, in
none of the existing solutions is the potential of sharing household broadband connections
through residential WLAN hotspots exploited.

Aiming at fueling the deployment of ubiquitous internet access, a novel approach was
proposed in [18] [19]. The scheme that is to be described in this document is based on the
peer-to-peer paradigm. The principles upon which its design is based are those of agent
autonomy, and implementation and deployment simplicity. The players in this scheme join
small teams, each of whom operates a number of public access points. The members of
the teams are mobile users who roam within the coverage area of access points that belong
to other teams. Each of these teams is a peer in our system. Roamers are granted internet
access according to the following simple high-level rule:

Members of a team are granted access if it can be proved that their team also serves

members of other teams

Thus, the system is built upon service reciprocity. These groups of WLAN users and oper-
ators build an exchange-based economy, in which the exchanged good is WLAN access.

The Peer-to-Peer Wireless Network Confederation (P2PWNC), as the proposed scheme
is called, does not impose on its users the overhead associated with the financial, legal and
technical complexity that traditional roaming aggreements incur. Instead, management
complexity is reduced by not using strict service accounting, offering agents autonomy
of decisions and grouping users in teams. The P2PWNC attempts to achieve the goal of
offering agents the right incentives that promote cooperation between them, considering
that agents are autonomous, rational and self-interested. By cooperation, adherence to the
reciprocity rule is implied. It is also implied that adherence to the rules of the system is not
enforced by any means other than by offering the right incentives. For example, teams are
encouraged to offer service with the promise of freely being served by their peers in the
future. All system participants, though, take independent decisions. What is more, none of
the system’s software components is considered tamper-proof; a user might as well deviate
from the specified behavior, if it is for her own interest. A peer may refuse to offer service
without being directly punished. However, the threat of being excluded from the system
and enjoy free roaming no more should prevent him from diverging from the system’s
rules.

2

Two possible deployment scenarios of the system have been studied and developed.
First, there is a centralized design, where a Trusted Central Authority maintains the history
of service provision in the system. Second, there is a decentralized one, where there is no
globally trusted central agent; rather, the TCA is replaced by team-local entities that are
only trusted by the members of the team to whom they belong.

The remaining document is organized as follows. In Section 2 the entities and the
architecture of the P2PWNC scheme are presented. Section 3 deals with the specification
of the protocol for the communication of the system entities and the generic agent behavior.
The reference implementation of this protocol is presented in Section 4. A perfomance
evaluation of the prototype system that has been imlemented is shown in Section 5. Finally,
potential extensions and future work can be found in Section 6, while Section 7 concludes.

3

2 The Peer-to-Peer Wireless Network Con-
federation

2.1 Background

The widespread deployment of WLAN hotspots has caused the emergence of wireless

cities. Household users and other hotspot operators set up wireless access points, each
of them offering network coverage to mobile users in a range of few meters. Such wireless
freenets [9] [1] aim at providing internet connectivity to their members and, sometimes, to
passers by their antennas.

Other approaches, such as [5] and [10], aim at the residential wireless access point
owners and offer a means of making a profit out of sharing their broadband internet con-
nections. That is, visitors to other access points are charged for the service they enjoy.
Residential WLAN and broadband connection owners may use such methods to compen-
sate for the maintainance cost of those connections. However, such solutions suffer from
management complexity issues. One the one hand, the companies that offer such services
are actually involved in the payment mechanisms. That is, they mediate transactions by
taking care of billing. On the other hand, there is overhead concerning economic, legal
and technical issues for the service providing access points, which may be a discouraging
burden, especially for household operators.

A proposal with the similar motivation as the P2PWNC is presented in [25]. The
scheme involves a reputation-based mechanism for Wi-Fi roaming with the presence of
a trusted central authority and employs a micropayment scheme. Another approach using
an exchange-based system to promote resource sharing is [13]. In particular, a peer-to-peer
file sharing system is described, which is based on indirect service exchange, in a similar
manner as in the P2PWNC scheme. However, their ideas are not direclty applicable to the
P2PWNC, since their assumption that both peers are providing service simultaneously may

4

seem restrictive for the case of WLANs.

2.2 Overview

The Peer-to-peer Wireless Network Confederation is a WLAN roaming scheme whose
participants are rational, self-interested and autonomous agents. Agent behavior is driven
by their tendency to maximize their profits, that is enjoy as much service as possible, having
the least possible cost.

In the proposed scheme, users team up, joining small groups that will from now on be
denoted as teams. Teams are the peer entities in the P2PWNC. A team has a number of
wireless access points in its possession and a team’s members are mobile users. That is,
the role of a team is dual; seen as a whole, it acts simultaneously as a service provider
(via their access points) and as a service consumer (via their roaming members). Roamers
interact with foreign access points. The outcome of such a transaction is service provision
on behalf of the access point and an unforgeable proof of service on behalf of the mobile
user, that will be denoted as receipt. Cryptographic primitives ensure the validity of this
proof of transaction.

History of prior transactions between teams is kept in a repository of receipts. As
mentioned earlier, this repository may be shared by all teams (centralized design) or each
team may keep its own private repository (decentralized design). The first case implies the
existence of a Trusted Central Authority (TCA) acting as the central repository. However,
even in this case, the maintenance of private team repositories is not out of the question.
Decisions of service provision taken by access points are normally based on the transaction
history.

Before delving into the details of the P2PWNC scheme, some basic assumptions and
characteristics of the system need to be stated.

� Peers are identified by simple public/secret key pairs.

� Team members are identified by a certificate issued by the team they belong to.

� Accounting is relaxed, and so is agent identification information. That is, although
the traffic that mobile users cause in visited hotspots is measured, service provision
is not granted strictly according to the measured traffic volume; rather, a probabilistic
module is used, as described in Section 4.2.4. Also, the only identification informa-
tion are public keys. No user names or real-world identities need to be used.

5

� Each team operates a number of Access Points providing access to roamers belong-
ing to other teams.

� Decision on whether a mobile user will be provided service are taken autonomously
by the service provider. Normally, this decision will be based on transaction his-
tory information, but this is is not enforced, in accordance with the agent autonomy
principle.

� Service is provided according to the following rule of reciprocity: “Members of

teams may be freely serviced by hotspots belonging to other teams if they can prove

that their team also serves members of other teams.”

� All system agents are selfish and rational. Thus, it is assumed that the threat of
exclusion from the system coupled with the promise of enjoying free wireless in-
ternet access can act as an incentive to cooperate and obey to the system’s rule of
reciprocity.

� There is no trust between peers, nor any cooperation between them is supposed. In
the centralized design of the P2PWNC scheme, full trust to the TCA is assumed.

� There is total intra-team trust.

In the following section, the P2PWNC system entities, their roles, characteristics and
relationships will be defined.

2.3 Entities

2.3.1 Teams

As described in the previous section, users of the P2PWNC form small teams. Teams are
providers and consumers of service at the same time. They provide service via the hotspots
they operate and their members consume service when visiting foreign access points. The
necessity of grouping members in small teams instead of regarding each individual as a
peer is apparent, considering the following advantages:

� Since the scheme proposed also aims at residential users and considering that each
peer is a provider and a consumer at the same time, it would sometimes be unrea-
sonable to demand that each individual sets up a hotspot of her own. That would be

6

the case for households that participate in this community; each household member
would need to set up her own access point.� Teams can include members who are willing to contribute but can only set up hotspots
in areas where demand is limited. For example, a member residing at the outskirts
of a city would rarely have the oppportunity to provide service (and thus gain cred-
its so that she can enjoy WLAN roaming in the future). By joining a team which
has hotspots in more crowded places, she can take advantage of the service pro-
vided by other team members in areas where there is more demand. In exchange,
such team members offer their teams (and, as a consequence, the whole P2PWNC
system) larger coverage.� By grouping members in teams, the total number of peering entities is reduced. Es-
pecially in the case of a centralized design of the P2PWNC scheme, management
complexity is reduced, since some managerial tasks are delegated to the teams.

Teams are expected to have a small number of members, usually of the order of a few
tens. For example, members of a family may form a team. Another example are hotspot
owners of a city neighborhood, who may pool their access points to improve their coverage.
The case of single member teams is possible, since they are a degenerate case of the team
model described.

A team is identified by a public/secret key pair. In the centralized case, these key pairs
may be issued by a Trusted Central Authority. In the decentralized case, they are self-
generated. Possibly, there will be a team “leader,” who will be responsible for maintaining
the team’s keys and generating new member key pairs and certificates.

2.3.2 Team Members

Team members are roamers who subscribe with a team. They are identified by a pub-
lic/secret key pair as well, which is issued by the team leader. Membership with a particular
team is expressed via a certificate, which has the following format:

Member Certificate =
�
Team Public Key, Member Public Key �������
	�����
���
�������

As it seems, a member certificate associates a team member with the team she belongs to.
The signature of the certificate is produced by the team leader using the team’s private key.
Since the team’s public key is contained in the certificate, team membership can simply be
checked by verifying the signature using the team’s public key.

7

As stated in Section 2.2, a basic assumption of the system is complete intra-team trust.
Namely, a team member is trusted by all others in the same team. It is assumed that a mem-
ber acquires a certificate and key pair after a face-to-face contact (or similar procedure) and
that the decision of accepting her in the team is taken unanimously by the existing team
members, so that intra-team trust is guaranteed.

Considering the full trust between team members and the peer model of the P2PWNC,
one may bring the necessity of member certificates in question. Why are certificates
needed, since peer entities are teams (and not team members) and since the consump-
tion of the members of a team is aggregated under the team’s name? The team’s public and
private keys might be distributed to trusted individuals instead of issuing certificates.

The answer to this question lays in the very nature of teams; for reasons of intra-team
trust management, it is important that the consumtion of service that a member does can be
discovered. This can be achieved, since the proofs of service provision (receipts) contain
the consuming member’s certificate. Thus, an overconsuming member, that is someone
who consumes service disproportionatelly to her colleagues can be discovered and, possi-
bly, punished, via an intra-team procedure.

It should be noted that the relationships between members of a team are not specified
in terms of the P2PWNC protocol. Thus, the trust model within a team, the member sub-
scribing procedure, the punishment of over-consuming members, etc. are autonomously
arranged by each team.

In the remainder of this document, the terms roamer, team member, mobile user, mobile

node or, simply, client will be used interchangeably to denote the same thing.

2.3.3 Access Points

Each team needs to provide WLAN access via a number of access points that it manages.
Access points (APs) are the means by which a team gathers credits so that its members can
enjoy WLAN service by foreign teams. An AP’s software agent is responsible for access
control to the team’s network. Also, it is responsible for collecting receipts from roaming
members of other teams and forwarding them to the receipt repository. Normaly, in case
a roamer wishes to have WLAN access to a visited AP, the AP will consult the receipt
repository (which maintains transaction history) on whether access should be granted to
the roamer, and act according to the receipt repository’s suggestion. In the end of the
WLAN session, the receipt of service provision should be forwarded to the repository.

8

2.3.4 Receipts

The Peer-to-Peer Wireless Network Confederation is a system based on service exchange
among peers. The service unit in this system is a receipt. A receipt is a proof of prior
transaction between a team member (service consumer) and a service providing team. It
contains the roamer’s certificate, the provider team’s public key, the timestamp indicating
when the transaction begun and the receipt weight, which is the amount of traffic forwarded
by the access point on behalf of the roamer during the session. Finally, a receipt contains
the signature of the service consumer on the above information.

That is, the roamer digitally signs the receipt, thus acknowledging the amount of service
that she has enjoyed during a transaction with a visited access point. A receipt has the
following format:

Receipt =
�
Consumer Cert., Provider PK, Session Timestamp, Weight ��	���	������
����
���
�������

The weight value of a receipt is measured by the service providing AP. Thus, by signing
a receipt, the mobile user accepts the AP measurement. To avoid being exploited by mali-
cious clients, who will consume resources and eventually refuse to sign a receipt (leaving
the service unacknowledged), the AP will normally request receipts from a roamer periodi-
cally during a session. Thus, during a typical session, a number of receipts is generated, all
of which share the same certificate, provider public key and timestamp. The weight value
strictly increases as time goes by. However, only the last receipt is valid for a session.
Therefore, the receipt characterizing a session can be uniquely identified by the follow-
ing tuple (Duplicate receipts are not permitted - the ones with smaller weight value are
ignored):

Receipt ID =
�
Consumer Cert., Provider Public Key, Timestamp �

Receipt validity can be checked by verifying the two signatures that are contained in it:
First, the signature contained in the consumer certificate, so that the roamer’s membership
with the specified team is ensured, and, second, the receipt signature, which is verified
using the member’s public key (included in her certificate).

2.3.5 Receipt Repository

History of transactions is maintained in a receipt repository. Receipts are generated after
roamer-access point sessions and are forwarded for storage to this receipt database. Such
a repository must support for the following operations:

9

� Receipt insertion

� Receipt lookup

� Receipt deletion

� Decisions on service provision

The last operation needs to be further explained. Since the receipt repository keeps track
of the system’s history and since service provision decisions are based on this information,
there must be an algorithm whose input are the identifiers of two teams (provider and
consumer) as well as the transaction history and its output should be a decision on whether
service should be provided to the potential consumer.

Since there are two possible deployment schemes for the P2PWNC presented in this
document, one centralized and one decentralized, the receipt repository can appear in two
forms. In the centralized case, there is a single receipt repository maintained by a trusted
central authority. In the decentralized case, each team keeps its private view of the system’s
history in its own repository.

2.3.6 Trusted Central Authority

This entity appears only in the centralized P2PWNC design. As mentioned previously,
it is responsible for maintaining the global transaction history of the system. Apart from
maintaining the receipt repository, it acts as a central team registry. The TCA issues key
pairs for teams.

However, it is designed so that it has the minimum possible intervention in the system.
In the centralized case, the role of the TCA is advisory; it cannot enforce punishments. It
can only suggest teams whether they should provide access to visitors or not.

2.3.7 Team Server

In the decentralized case, where there is no global history of transactions, the role of the
TCA is played by Team Servers. A team server is a trusted entity only inside the boundaries
of one team. Each team operates exactly one team server. The additional functionality that
it offers over the TCA is that team members can directly communicate with it and send
receipts or obtain an updated view of the receipt repository (that is, team members can
retrieve receipts from the team server).

10

Team servers may also exist in the centralized case. In fact, considering agent auton-
omy, a hybrid system design where some teams follow the suggestions of a TCA and other
teams ignore it in favor of their local team server is feasible.

2.4 Architecture

2.4.1 Centralized Design

In the centralized case of the P2PWNC there is one global receipt repository (RR) main-
tained by the TCA. Figure 2.1 depicts this architecture. As one can see, there are three
teams whose members roam around the access points of each other. Mobile users com-
municate with visited access points over wireless links, while access points connect to the
TCA over the Internet.

Figure 2.1: P2PWNC centralized mode

11

2.4.2 Decentralized Design

Figure 2.2: P2PWNC decentralized mode

As previously stated, in the decentralized case, each team has a local receipt repository
which is managed by the team server. Team members can communicate with the team
server to update their receipt repository, which they carry with them. This communication
may be carried out over the Internet. Several security issues therefore arise. However, they
are considered out of the scope of this document.

As shown in Figure 2.2, each team communicates with its own team server, which
handles the team’s repository. It should be noted that the team server might as well be
collocated with an access point. In Figure 2.2 the white team server is physically collocated
with one of the team’s APs.

12

3 Protocol Specification

3.1 P2PWNC Protocol Messages

3.1.1 General

Communication between the entities of the P2PWNC system is carried out through a set
of simple ASCII-based messages. These core messages are enough to specify communi-
cation between each pair of these entities, namely between the access point module and
the client, the access point and the trusted central authority, a client and her team server
(in the decentralized case) and the access point and its team server. This minimal set of
messages can also be used for future extensions to the system or for operations that are not
specified in our system and by the protocol. For example, a distributed receipt database
that stores a team’s receipts can be built on top of a team’s access points making use of
some of the existing messages. In the following paragraphs the set of protocol messages,
their semantics and their usage are described in detail. Also, the ABNF [16] specification
of our protocol is given.

The messages of the P2PWNC protocol are plain text. There were numerous reasons
that lead to this choice. First, text messages are human-readable, which makes them more
comprehensive. Second, they are more convenient when protocol debugging comes to
question. Taking the speed of modern wireless network infrastructure (e.g. the 54Mbps
802.11g protocol) into consideration, the overhead incurred by text representation of data
is negligible.

As to the format of the messages, they are composed of a four-charactered message
header, which represents the message type. These four characters are followed by a manda-
tory “Content-length” header, which indicates the number of octets that follow the content
length header. All line breaks are carriage-return line-feed (CRLF) sequences. The content
length header is followed by other headers and data, which are message specific. Binary

13

data that are not human-readable are Base64 [24] encoded. Timestamps represent UTC
time and are encoded according to the RFC 822 [15] format.

3.1.2 Core Protocol Messages

What follows is a list of these messages and a short description of each one of them.

CONN This message initiates a session between a roamer and a visited access point. It is
sent by the roamer and contains her certificate, so that the visited access point can
verify the roamer’s membership with the certificate issuer team.

CACK This message indicates that a roamer has been admitted access to a visited wire-
less network. Normally, it is the access point’s response to a CONN message. The
CACK response includes the session’s timestamp, namely the time that the session
has started. All subsequent receipts that a client is to sent to the access point as
an acknowledgment of the provided service during the session should include this
timestamp.

RREQ Periodically, the access point requests that the roamer acknowledges that she has
consumed a specific amount of service during the session. This request is performed
by means of an RREQ message. This message includes the traffic that the roamer
has initiated during the session, measured in bytes, and the provider team’s public
key. The roamer is supposed to immediately reply with an RCPT message, which is
described below.

RCPT An RCPT message is the basic unit of information about service provisioning in
the P2PWNC system. It represents a transaction between a roamer and the access
point of another (service providing) team. An RCPT message contains the roamer’s
certificate (roamer’s team public key, roaming member’s public key, team signature),
the service providing team’s public key, the amount of traffic initiated by the mobile
user during the session (receipt “weight,” measured in bytes) and the session’s times-
tamp. All the above are digitally signed by the roaming member using her private
key. This signature is included in the RCPT message, thus acknowledging service
consumption on behalf of the client. It should be noted that during each session,
many receipts may be generated. All these receipts have the same timestamp (be-
ginning of the session) but have increasing “weight” values, since they are client
responses to the periodical RREQ messages sent by the access point. Eventually,

14

only the last receipt of a session is significant for the system, since it summarizes
the amount of service the provider has offered to a roamer during the session in
question. Being the system’s means of measuring service provision/consumption, an
RCPT message is also used with the exact same structure in many other cases in the
P2PWNC protocol.

QUER This message is used by an access point to inquire whether access should be
granted to a visiting roaming user. It contains the public key of the provider team
and the public key of the team to which the roamer belongs. A QUER message is
sent to a system module that is capable of deciding whether the requesting member
(mobile user) should be granted admission to the provider team’s wireless local area
network. In the centralized case, such a module can be a Trusted Central Authority
(TCA), while in the decentralized case, the decision about the clients admission is
taken normally by the provider’s Team Server (which might as well be collocated
with the service provisioning access point).

QRSP A QRSP message is the reply to a QUER one. It is issued after the module re-
sponsible for deciding whether the client should be granted access has processed the
QUER message. The header field “Action,” which can take the values “Grant” or
“Forbid” indicates the outcome of the decision function.

RRSP This message is the reply of the entity responsible for storing receipts (typically the
TCA or a Team Server) when it is sent a receipt. In case of an error while handling
the receipt, the RRSP message contains information about the reason of the error.

UPDT An UPDT message can be issued by a roamer so that she can refresh her receipt
repository. It is sent to the roamer’s home Team Server. This message contains a
timestamp field. The Team Server that receives an UPDT message sends the roamer
the receipts whose timestamp is more recent than the one specified by the roamer.
Obviously, this functionality is only necessary in the distributed case. In the central-
ized one, there is no need for a mobile user to carry receipts, since all transactions
are stored in the Trusted Central Authority’s repository.

15

3.1.3 Augmented BNF for the P2PWNC Protocol

3.1.3.1 Generic Data Types

In this section, the syntax of some basic data types that are in use throughout the protocol
specification is introduced. The set of these data types contains decimal integers, Base64
encoded data and timestamps. As mentioned before, timestamps are represented according
to the RFC822 protocol [16]. The rule name that expands to a timestamp of this format
is � date-time . The ABNF syntax specification for this rule is omitted. However, an
example of such a timestamp follows:
Mon, 23 May 2005 16:13:39 +0000

For decimal integers, the syntax is presented below:� DEC-INT ::== 1 � NON-ZERO *DIGIT� NON-ZERO ::== "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

As far as Base64-encoded data are concerned, the alphabet used are upper and lower
case ASCII characters and the characters “+” and “-”. The character “=” is used for
padding. In the Base64 encoding specification, the output character stream must be for-
matted in lines of no more than 76 characters each. In the P2PWNC protocol, the maxi-
mum length of such lines is limited to 64 characters. Lines are separated by a single CRLF
sequence. The specification of the above is as follows:� B64-CHAR ::== ALPHA | DIGIT | "+" | "/"� B64-PAD ::== "="� B64-TERM-LINE ::==

64 � B64-CHAR
| *63 � B64-CHAR !� B64-PAD
| *62 � B64-CHAR 2 � B64-PAD � B64-NON-TERM-LINE ::== 64 � B64-CHAR CRLF� B64-DATA ::== * � B64-NON-TERM-LINE �� B64-TERM-LINE

3.1.3.2 Generic Message Format

P2PWNC protocol messages are plain ASCII messages that conform to the following
generic pattern:� P2PWNC-MSG ::==� MTYPE � CLEN-HDR

16

[� EXTRA-HDRS]
[CRLF � EXTRA-DATA]

where� MTYPE ::== 4ALPHA CRLF� CLEN-HDR ::== "Content-length:" SP � DEC-INT � EXTRA-HDRS ::== *(CRLF � HDR)� HDR ::== � HDR-NAME ":" SP � HDR-VAL � HDR-NAME ::== 1*CHAR� HDR-VAL ::== 1*CHAR� EXTRA-DATA ::== 1*CHAR

Therefore, the generic P2PWNC message format is described by a four-character message
type field, followed by a mandatory content length header, whose value is the number of
octets contained in the message after the first CRLF encountered (that is the CRLF at the
end of the content length header). The “Content-length” header is then followed by a num-
ber of (optional) other headers with similar structure to that of the “Content-length” header
and other optional message specific data, such as a Base64 encoded public key.

The order of the additional headers is important and it is message specific. All strings
are case insensitive, apart from any Base64 encoded data, for which case is of importance.
It should also be noted that whitespace following a header name should be limited to ex-
actly one space. Therefore, the following headers are not equivalent; according to the
P2PWNC protocol, the former is malformed:
Content-length: 100

Content-length: 100

However, the headers
CoNtEnT-leNGTh: 100

Content-length: 100

are both equivalent and well-formed.

3.1.3.3 Message-specific Headers

Having specified the generic format of message headers previously, the message-specific
headers are going to be presented with the use of ABNF notation. These headers are used
by various protocol messages. � ALGORITHM-HDR is the header that represents the public
key cryptography algorithm used (RSA or ECC) and typically looks like:
Algorithm: ECC160

17

The � TIMESTAMP-HDR header represents timestamps according to the date and time for-
mat introduced in the RFC822 standard. Finaly, � WEIGHT-HDR refers to the “Weight:”
header, that is used in RCPT messages.� ALGORITHM-HDR ::== "Algorithm:" SP � ECCID | � RSAID � ECCID ::== "ECC" ("160"|"192"|"224"|"256")� RSAID ::== ("1024"|"1536"|"2048")

� TIMESTAMP-HDR ::== "Timestamp:" SP � date-time
� WEIGHT-HDR ::== "Weight:" SP � DEC-INT
� ACTION-HDR ::== "Action:" SP ("Grant" | "Forbid")

3.1.3.4 Protocol Messages

The set of protocol messages that comprise the P2PWNC protocol was presented in 3.1.2
In this section, the syntax of these messages is specified. In addition, examples of each
message type are cited. The names of the rules in the specification of the messages are
self-explanatory. For example, the rule name � CONN-MSG implies the “CONN” message.
It should also be noted that emphasis is given on the syntax of the messages described,
rather that their semantics. However, in situations that it is considered necessary, further
explanations on the meaning of fields will be provided.

CONN message� CONN-MSG ::==

"CONN" CRLF� CLEN-HDR CRLF� ALGORITHM-HDR CRLF� B64-DATA
The B64-DATA field, in the case of a CONN message, contains the sender’s P2PWNC
certificate, represented as a character stream output by a Base64 encoding procedure. The
details of the procedure that results to this representation are given in 3.3.3.
Example:
CONN

Content-length: 187

18

Algorithm: ECC160

BNibmxStfJlod/LnZubH6pzWHQqKyZFcSMjnZurmTe4KjCRkllhV93MEegPvCsxz

2oe/hqevoPSrwO1JLO/36J8HTIeyeKQqTCfx+EPxweAvYC/ZFb8URLa2faIbvSgD

3lm6Wa1S4cYlSWeSNmFzS/ebDFfzakqNSEs=

CACK message� CACK-MSG ::==

"CACK" CRLF� CLEN-HDR CRLF� TIMESTAMP-HDR
Example:
CACK

Content-length: 42

Timestamp: Tue, 24 May 2005 17:26:41 +0000

RREQ message� RREQ-MSG ::==

"RREQ" CRLF� CLEN-HDR CRLF� ALGORITHM-HDR CRLF� WEIGHT-HDR CRLF� B64-DATA
The last field of an RREQ message is the Base64-encoded public key of the provider team.
For more information on the representations of public keys one should refer to 3.3.1.
Example:
RREQ

Content-length: 89

Algorithm: ECC160

Weight: 6336

BEXn8BHHViQ/YMyF2ny+KaI4YXz+W60uED7R8wZefDznyncfQKggzAc=

RCPT message� RCPT-MSG ::==

"RCPT" CRLF

19

� CLEN-HDR CRLF� ALGORITHM-HDR CRLF� TIMESTAMP-HDR CRLF� WEIGHT-HDR CRLF� BASE64-DATA
The � BASE64-DATA field, in this case, represents the fields of a receipt that are not
human readable, namely the consumer’s certificate, the provider’s public key and the sig-
nature of the receipt. For a detailed description of the procedure that generates this repre-
sentation one should refer to 3.3.4.
Example:
RCPT

Content-length: 357

Algorithm: ECC160

Timestamp: Tue, 24 May 2005 17:26:41 +0000

Weight: 6336

BNibmxStfJlod/LnZubH6pzWHQqKyZFcSMjnZurmTe4KjCRkllhV93MEegPvCsxz

2oe/hqevoPSrwO1JLO/36J8HTIeyeKQqTCfx+EPxweAvYC/ZFb8URLa2faIbvSgD

3lm6Wa1S4cYlSWeSNmFzS/ebDFfzakqNSEsERefwEcdWJD9gzIXafL4pojhhfP5b

rS4QPtHzBl58POfKdx9AqCDMBxRoGALKJSJYYXlsrwtiyZJKvPlU5B3lWrFuL25P

d+kv2iMVRElXk/4=

QUER message� QUER-MSG ::==

"QUER" CRLF� CLEN-HDR CRLF� B64-DATA 2CRLF� B64-DATA
In this case, clarification may be needed as to the � B64-DATA fields contained in the
body of the message. As stated in 3.1.2, the first � B64-DATA field represents a service
provider and the second a potential service consumer. A noticeable difference between
QUER and the other messages of the protocol is the precence of two consecutive carriage
return - line feed sequences separating the two public key representations. The rationale
behind this choice is that it assists in distinguishing between the two keys, which may have
different bit length.

20

Example:
QUER

Content-length: 116

BEXn8BHHViQ/YMyF2ny+KaI4YXz+W60uED7R8wZefDznyncfQKggzAc=

BNibmxStfJlod/LnZubH6pzWHQqKyZFcSMjnZurmTe4KjCRkllhV93M=

QRSP message� QRSP-MSG ::==

"QRSP" CRLF� CLEN-HDR CRLF� ACTION-HDR
Example:
QRSP

Content-length: 14

Action: Forbid

RRSP message� RRSP-MSG ::==

"RRSP" CRLF� CLEN-HDR CRLF
("OK" | ("ERR" [SP *CHAR]))

As one can observe, the status code contained in an RREQ message can either be “OK”
or “ERR.” In the latter case, ERR can optionally be followed by an explanation of the er-
ror that has taken place. The explanation can be an arbitrary application-specific character
stream, which is not specified in the protocol.
Example:
RRSP

Content-length: 2

OK

UPDT message� UPDT-MSG ::==

"UPDT"

21

� CLEN-HDR CRLF� TIMESTAMP-HDR
As to the UPDT message format, it is considered rather simple and self-explanatory, so no
further details need to be provided.
Example:
UPDT

Content-length: 42

Timestamp: Sat, 09 Apr 2005 14:53:35 +0000

3.2 Cryptography

3.2.1 Supported Cryptosystems

The P2PWNC protocol supports both the RSA and the Elliptic Curve cryptosystem. Proto-
col messages that carry cryptographic data in their bodies include an “Algorithm” header,
which indicates the algorithm that has been used for the generation of those data. The
“Algorithm” header is followed by a semicolon, a space character and the algorithm iden-
tifier. This identifier starts with “RSA” or “ECC” and is followed by the length in bits of
the keys associated with these data. For example, in an RCPT message, the algorithm field
specifies the receipt signature algorithm. If the signer of the receipt (mobile user) makes
use of a 1024 bit RSA private/public key pair, the value of the “Algorithm” header will
be “RSA1024.” In a similar fashion, if a visited access point’s team public key follows an
160-bit elliptic curve cryptography standard, the “Algorithm” field of an RREQ message
(carrying the access point’s public key) will be “ECC160.”

Although the specification of the P2PWNC protocol includes both the RSA and the
ECC cryptosystems, not all of the system’s agents need to be both ECC- and RSA-enabled.
The Trusted Central Authority (centralized mode), the Team Server (decentralized mode)
and the access point modules need to be capable of performing both RSA and ECC cryp-
tographic operations. It is necessary for the TCA to be able to generate both kinds of key
pairs and to be able to verify receipts. In a similar fashion, team servers may verify and
store receipts generated using any kind of keys and, thus, should support for both cryp-
tosystems. As to the access point modules, they need to be capable of verifying receipts,
which can come from both RSA- and ECC-enabled mobile users. Roamers, on the other
hand, are not obliged to have support for both cryptosystems, since the only cryptographic

22

operation that they perform is receipt signing.
However, even if there is no need for a client to be capable of handling both cryptosys-

tems, it is advisable that implementations of mobile users’ software agents have support
for both RSA and Elliptic Curve cryptography.

3.2.2 Key Generation

Each team, that is each of the “peers” of the system, is identified by a unique public/private
key pair. In the centralized case, this key pair might as well have been generated by a
Trusted Central Authority. In the decentralized case, teams can generate their identities
themselves. In either case, teams generate key pairs and certificates for their members
independently, that is without the intervention or control of any other party.

It is mandatory that the keys and certificates of members follow the same algorithm
as the issuing team’s. Namely, a team that is identified by a 1024-bit RSA public key,
MUST generate RSA-1024 key pairs for its members. As a result, the three parts of a
member certificate, that is the issuing team’s public key, the mobile user’s public key and
the certificate signature are characterized by the same algorithm.

3.2.3 RSA Cryptosystem Parameters

An RSA key pair is described by three numbers; the public modulus n, the public expo-
nent e and the private exponent d. The public key is composed of the pair (e, n) and the
private key is composed of the pair (d, n). In the P2PWNC protocol, the public exponent
is fixed to 65537, so it need never be encoded in the public key data. An RSA key pair is
characterized by the bit length of its modulus (n). Acceptable values for the length of the
modulus in the P2PWNC are 1024, 1536 and 2048. Smaller keys are considered insecure,
while longer keys impose a greater overhead on the agents while performing cryptographic
operations. Since the protocol has been designed with embedded devices with limited pro-
cessing power in mind, 1024 bit keys are considered the appropriate solution and are thus
recommended for use within the P2PWNC.

3.2.4 Elliptic Curve Cryptosystem Parameters

As far as elliptic curve cryptography is concerned, the choice of the parameters follows the
ANSI X9.62 standard. The elliptic curve domain parameters used in the P2PWNC protocol

23

are recommended in [21]. In particular, the curves that are employed for the generation of
key pairs are verifiably random named curves.

For the purpose of being easily identified, recommended elliptic curves have been given
nicknames [21]. This naming convention was proposed by the “Standards for Efficient
Cryptography” group. Curve nicknames used in the P2PWNC protocol begin with “sec”,
followed by the letter “p” to indicate that the curve parameters are over the "$# finite field.
This is followed by the field size p in bits (160, 192, 224 or 256 bits). Finally, there is
the letter “r” to indicate that the curve parameters are verifiably random followed, by a
sequence number. Table 3.1 summarizes the nicknames of the valid elliptic curve domain
parameters in the P2PWNC protocol. The first column shows the size of the field on which
the curves are defined, while the second column shows the nicknames of the curves.

Table 3.1: Valid ECC curves in the P2PWNC protocol

Size Curve Nickname
160 secp160r1
192 secp192r1
224 secp224r1
256 secp256r1

Thus, in the case of an “ECC160” algorithm header field, the curve with the nickname
“secp160r1” is implied. In a similar fashion, “ECC192” implies the “secp192r1” curve.
Acceptable bit lengths (denoted as n) are 160, 192, 224 and 256. However, the use of
the “secp192r1” curve is recommended, for the same reasons that 1024 bit RSA keys are
considered more appropriate among other bit lengths. Tests on the time efficiency of cryp-
tographic operations for various key types and sizes that are presented in 5.3 suggest that
this is the most appropriate key choice. In an ECC key pair, the secret key is an integer of
bit length n and the public key is a point in the curve, defined by its x and y coordinates.

3.3 Data Representation

3.3.1 Public and Private Keys

In this section the representation of keys will be described. In fact, only the representation
of public keys is of importance to the P2PWNC protocol, since only public keys may

24

actually be exchanged.
As to RSA keys, as previously mentioned, the public exponent is fixed to 65537. There-

fore, it need not be encoded with the public key data. The part of the RSA public key that
is actually encoded is the public modulus. Whenever an RSA public key is mentioned, its
public modulus will actually be implied. Each time a public key is to be transmitted through
the network, it should be converted to its “wire” format, namely the Base64 encoding of its
modulus.

ECC public keys are represented without the use of the point compression technique
[20]. The key is encoded as an octet string whose leftmost byte signifies that point com-
pression is off. The remainder of the byte array contains the x coordinate of the public key
(a point of an elliptic curve) followed by its y coordinate. The length of this representation
is twice the value of n plus one octet to indicate that point compression is not in use.

3.3.2 Digital Signatures

Agents that are identified by RSA key pairs use the RSA digital signature scheme. In this
case, the signer first produces the SHA-1 digest of the data that are to be signed. Following
that, she digitally signs the 20-byte digest using her private key. The bit length of the
signature is equal to the length of the private key modulus. For example, using 1024 bit
RSA keys, the signature is 128 bytes.

In the case of elliptic curve cryptography, ECDSA is the signature algorithm used.
The output of the ECDSA operation is a couple of integers S = (r, s). These integers are
serialized (in big endian form) into an octet string whose leftmost part is r and its rightmost
part is s.

3.3.3 Digital Certificates

The certificates used in the P2PWNC scheme represent membership of a mobile user with
a team of users. Thus, they contain the public key of the issuing team, the public key of
the team member and the digital signature of the above keys produced using the issuer’s
secret key. Such a certificate is generated carrying out the following operations in the given
order:� Represent the two public keys as described in the previous paragraph.� Concatenate the public keys so that the public key of the issuing team occupies the

leftmost part of the byte array and the public key of the team member occupies the

25

rightmost part.

� Generate the digital signature of the produced byte array and represent it as described
in the previous paragraph.

The wire format of a P2PWNC certificate is generated as follows:

� Concatenate the octet strings representing the keys and the signature included in
the certificate so that the leftmost part of the certificate is the issuing team’s public
key, followed by the member’s public key. The rightmost part of the byte array is
occupied by the representation of the digital signature.

� Base64 encode the resulting byte array.

The resulting ASCII string can be concatenated in a P2PWNC protocol message, such as a
“CONN” message.

3.3.4 Receipts

A receipt is a proof of prior transaction between a roaming user and a service providing
team. As such, it must necessarily contain the roamer’s certificate, the public key of the
service provider team, a timestamp indicating the beginning of the session and the amount
of traffic which the roamer has been charged with, namely the traffic that the client has
initiated. Finally, a receipt contains the signature of the consumer of the service, thus
acknowledging the service consumption on his behalf that the receipt is representing.

It should be noted that the timestamp represents the amount of seconds elapsed since
00:00:00 on January 1, 1970, Coordinated Universal Time. As far as the receipt weight is
concerned, it is measured in bytes. These values are represented using four-byte integers.

A receipt signature is generated by carrying out the following operations in the specified
order:

� Serialize the roamer’s certificate in a way that the resulting byte array has the public
key of the certificate issuing team as its leftmost part, followed by the public key of
the member and having the certificate signature as its rightmost part.

� Append the public key of the service providing team, represented as described in
Section 3.3.3, to the octet string that was output by the previous step.

26

� Convert the receipt timestamp in big endian form if necessary and append its octet
representation to the byte array that was output by the previous step.

� Convert the receipt weight in big endian form if necessary and append its octet rep-
resentation to the byte array that was output by the previous step.

� Finally, digitally sign the octet string that was output by the previous step and con-
tains the certificate of the service consumer, the public key of the service provider,
the session timestamp and the session weight making use of the consumer’s secret
key. The resulting signature is represented as described in Section 3.3.2.

3.4 Entities and their Behavior

3.4.1 System Parameters

The system parameters involved in the operation of the P2PWNC protocol entities are
resources like TCP ports and timers. Having stated that the design of our scheme was
based on the autonomy of actions of system agents, this set of parameters is limited.

The services that the system offers are built on top of TCP. It should be noted, though,
that the use of the specified protocol messages can be used to build a similar system based
on UDP. However, in this document, the use of TCP will be implied unless otherwise stated.

As to the standard TCP ports used in the P2PWNC protocol, the access point normally
listens for incoming client messages on the 9999 port. The TCA and team server modules
listen for connections on the 3333 TCP port. However, it is expected that implementations
may give the opportunity to configure the software agents to that they can listen to other
ports.

As to the various timers that are used to control the operation and communication of
agents and the transition between states, they are not specified here. In the line of the agent
autonomy principle, these are left to be defined by the protocol implementors, together
with other parameters such as the receipt repository size or the time horizon that sets the
lifetime of a receipt.

27

Figure 3.1: Client operation in centralized mode

3.4.2 Centralized Case

3.4.2.1 Client Behavior

In the case of a centralized structure of the P2PWNC scheme, the client need not perform
any additional actions in order to request for service, other than send the access point
module a CONN message. It is implied that a connection to the standard TCP port that the
access point listens for client connections has already been established. After admission
control has been performed on the access point side, the client periodically refreshes the
session via RCPT messages and finally, when she wishes to discontinue the session, the
TCP connection is shut down. There is no explicit disconnection message at the P2PWNC
protocol layer.

From the short description that preceded, three states can be distinguished. The client
begins in the offline state, during which she is not beeing provided service nor does she
expect to be provided service. A client is in the offline state before having issued a CONN
message and after having been disconnected.

The transition from the offline state to the pending state is performed via a CONN mes-
sage. When in the pending state, a client is waiting for her access request to be evaluated
by the access point. A timeout at this point indicates that the CONN request was rejected
by the access point or that some other error has occured. Therefore, the client returns to

28

the offline state.
In case the connection request was accepted, access is granted to the client, who thus

moves to the online state. The mobile user retains her state by accepting RREQ messages
by the access point module and replying by RCPT messages. Namely, the access point
periodically sends receipt requests (RREQ) and the client may respond with an RCPT,
acknowledging the service that has been provided thus far. Failure to provide an RCPT
message in time (referring to an access point timeout), a client-side timeout expiration
while waiting for an RREQ or a TCP connection shutdown result in a transition back to the
offline state. The above states and transitions can be seen in Figure 3.1

3.4.2.2 Access Point Behavior

A typical access point software agent is a server that listens for connections by mobile
users and initiates a client session for each of them. For each session, state is maintained.
State information includes the session timestamp, the certificate of the mobile user, the
last receipt sent by the client and the timer specifying when the next RREQ message is
scheduled to be sent to the client.

A session between a mobile user and an access point, from the point of view of the
access point agent, can be described as the transition between five states. A session is
client-initiated and starts as soon as a TCP connection is established. Thus, the access
point enters the session started state, expecting a CONN message by the mobile user. In
case the timer that is associated with the CONN message reception expires, a transition to
the session ended state takes place. Otherwise, if the CONN message is received in time,
the access point enters the pending state, during which it is determined whether the mobile
user is to be granted access or not.

During the pending state, the access point first performs the necessary checks on the
client’s certificate. In case of a verification error or other error concerning the client’s
credentials, the TCP connection (e.g. connection shutdown) or the access point’s internal
functions a transition to the session ended state occurs. If the above checks are passed
successfully, the access point communicates with the Trusted Central Authority (the receipt
repository) via a QUER message to decide about granting access. Depending on the TCA
response, there may be a transition to the connected state (if the QRSP message indicates
that access should be granted) or to the session ended state (in case of a QRSP message
with an “Action: Forbid” header). A move to the session ended state also happens in case,
in a similar fashion as in other cases, the TCA delays to respond to the QUER message.

29

Figure 3.2: Access point client session in centralized mode

If the TCA suggests that access should be granted, after the performance of necessary
(application specific) actions associated with providing service to the mobile user (such as
setting up firewall parameters or setting up traffic measurement capabilities for the session),
there is a transition to the online state.

As its name implies, in this state the mobile user can enjoy internet access. This state is
retained as long as the mobile user responds in time to the session refreshment messages,
that is receipt requests (RREQ). Receipts are requested in regular intervals. Each time
an RREQ message is to be constructed, the access point measures the amount of traffic
initiated during the session in question and requests that the mobile uses acknowledges this
service via an RCPT.

30

In case there is a failure in the verification of the first receipt or the session is ended
before the first receipt has been acquired, the access point automatically moves to the
session ended state. Otherwise, the next transition will be from the online to the finalize

session state and will occur as soon as the access point is notified that the connection has
been terminated by the client or if the timer associated with the receiption of the next
receipt expires.

In the finalize session state, operations concerning freeing up resources that have to
do with this session are released and the last receipt of the session is sent to the central
receipt repository (TCA). The access point may wait for an explicit RRSP message from
the TCA or may shut down the connection to the TCA. Eventually, the session is ended via
a transition to the session ended state.

The above procedures are visualized in Figure 3.2.

3.4.2.3 TCA Behavior

The operation of the TCA is simple in terms of the P2PWNC protocol specification. Al-
though internally rather complicated operations may take place, concerning receipt storage
and decisions on granting access, they are not specified in this section. Generally, it ap-
proximates stateless behavior.

The TCA listens for QUER and RCPT messages, since its role is to store receipts and
suggest P2PWNC service providers on granting or forbidding access to visitors. A TCA
session is described as the exchange of two messages with the access point.

� In case of a QUER message, the TCA replies with a QRSP.

� In case of an RCPT message, the TCA replies with an RRSP.

3.4.3 Decentralized Case

3.4.3.1 Client Behavior

The client has a slightly modified behavior and some additional capabilities, compared to
her operation in centralized mode. Namely, the mobile user has the option of initiating the
session by sending the visited access point receipts, so that she can increase the possibility
that she will be granted access. After sending an arbitrary amount of receipts, she should
send the CONN message. The transaction between the roamer and the access point is then
continued in the same manner as in the centralized case.

31

Figure 3.3: Client operation in the decentralized operation mode

Considering the fact that a team’s receipt repository is dynamically updated (older re-
ceipts are replaced by new ones), the client can arbitrarily communicate with her team
server so that she can update her repository via an UPDT message. How communication
with the team server is achieved is not specified here. That is, details concerning security
and authentication issues or the underlying network infrastructure used are not specified in
terms of the P2PWNC protocol. For example, it is supposed that the roamer and the team
server may have eshtablished a secure channel to exchange messages and this may be done
over a network such as GPRS.

Two additional states are thus introduced. If the client is about to request service from
a service providing access point, she enters the sending receipts state by sending an RCPT
message to the access point. She remains in this state by sending RCPT messages to the
access point and makes a transition to the pending state via a CONN message. Otherwise,
she moves back to the offline state in case the connection to the access point is shut down
or if she fails to send the CONN message in time.

The other additional state, compared to the centralized state machine, is the updating

receipts state, to which the client enters by sending an UPDT message to its team server.

32

This state is preserved while the client keeps receiving RCPT messages from the team
server. Finally, she returns to the offline state when there are no more receipts to be sent.
This is not stated explicitly; rather, it is indicated by a timer expiration or an abrupt con-
nection shutdown. The state machine describing the client functions when operating in the
decentralized mode can be seen in Figure 3.3.

3.4.3.2 Access Point Behavior

Figure 3.4: Client operation in the decentralized operation mode

The access point module, behaves in a similar manner as in the centralized case. How-
ever, as seen in Section 3.4.3.1, it should be capable of receiving receipts in the beginning
of the session.

33

The operation of the access point agent in the decentralized version of the P2PWNC
scheme is presented in the state machine of Figure 3.4. The additional state introduced
here is the receiving receipts state. The transition to this state is performed via an RCPT
message received from the client. This must be the first message in the session, if the client
wishes to provide receipts to the access point. Otherwise, the message sequence during the
session will be identical to that of the centralized case. The way RCPT messages received
while the access point is in the receiving receipts state will be handled is not specified in
the protocol. Normally, they are automatically forwarded to the team server module, which
might as well be collocated with the access point. That is, the access point and the team
server, although logically independent, may be physically the same entity.

The TCA module is now replaced by the team server. Thus, the QUER, QRSP and
RRSP messages, as well as the RCPT message in reply to which the RRSP message is
received, are all exchanged between the access point and the team server.

3.4.3.3 Team Server Behavior

Figure 3.5: Team server operation

The team server acts as a central receipt repository for the access points and the mem-

34

bers of a team. Its operation resembles that of the TCA in the centralized case, except that
it is capable of replying to UPDT queries by a team’s members.

In Figure 3.5, its operation is specified. As one can see, a team server session begins as
soon as a TCP connection is established between this module and another system entity. At
this point, the team server is in the session started state. Depending on the type of message
that will be received, a transition will take place. Four cases can be distinguished:� Reception of an UPDT message.

In this case, the update operation of a client’s repository is to take place. Normally,
this session is initiated by a client that wishes to update its repository. This state is
preserved by the team server while receipts are being sent to the requesting client.
As soon as the update operation finishes, the team server moves to the session ended

state.� Reception of an RCPT message.
The team server will now move to the handle receipt state. The actions that are per-
formed when such a message is received are not specified by the protocol. Normally,
the receipt will be placed in permanent storage, after necessary checks will have been
performed on it. A transition to the offline state is performed via an RRSP message
(or a connection shutdown, as usual) sent to the requesting entity.� Reception of a QUER message.
A QUER message leads the team server to the judge state. As in the case of an RCPT
message, the operations to be performed are not specified. Namely, the methods used
by this module to derive an answer to the query are implementation-dependent. A
transition to the offline state follows a QRSP message sent by the team server to the
entity that initiated the session.� Reception of a message of an unknown type or connection shutdown.
In this case, the team server simply moves to the offline state.

3.5 Message Sequences

In this section diagrams that present the sequence of messages in the communication be-
tween P2PWNC system entities are shown. Only typical cases where entities behave nor-
mally and without failures are included here. Time intervals between messages are arbi-
trary, since timeouts are not specified in the protocol (as noted in Section 3.4.1).

35

In Figure 3.6 the messages exchanged during a mobile user - access point session in the
centralized scheme are shown. The same case is presented in 3.7 for the decentralized case.
It should be noted that in this Figure, the sequence of RCPT messages at the beginning of
the session is optional. Finally, in Figure 3.8 one can see the messages that are exchanged
between a team member and its home team server, when the former is updating her receipt
repository.

Figure 3.6: Message sequence in the centralized operation mode

36

Figure 3.7: Message sequence in the decentralized operation mode

Figure 3.8: Receipt repository update operation

37

4 Reference Implementation

In this chapter, a reference implementation of the P2PWNC protocol that was specified in
Section 3 is presented.

4.1 Generic Modules

4.1.1 Protocol Module

The protocol module is actually the implementation of the core of the P2PWNC protocol.
Namely, it contains the basic data structures used by all system entities and the definitions
of protocol messages. What is more, it contains routines for generating and parsing pro-
tocol messages and routines for converting data from their internal representation to other
formats and vice versa. Also, input and output operations such as reading and writing
to permanent storage or transmitting and receiving messages over the network are imple-
mented here.

This module is shared by all system agents and is designed in a way that it depends as
little as possible on third party implementors. Therefore, it does not include functionality
for cryptographic operations nor does it depend on a specific thread library implementation.

4.1.1.1 Data Structures

Since one of the design goals of the core protocol module was generality, portability and
independence from third party software vendors, it was convenient to represent data such as
public and private keys, certificates and digital signatures in a generic internal format. This
internal representation is an abstraction that is not bound on a specific implementation of
a cryptography library. It is merely an interface between software modules that may have
been developed independently and need to interoperate. One of the advantages of this
approach is that one may migrate to another third party library to perform specific tasks

38

(such as cryptographic operations) only by providing routines for the conversion from the
third party data representation to the internal P2PWNC format. What is more, the internal
P2PWNC representation is more comprehensive in terms of the protocol, since its data
structures do not include unnecessary information and are close to the logical view that
one has of the data that they represent. In the following, a detailed description of these
structures will be given, making use of C structs.

4.1.1.1.1 Key and Signature Format The internal format of public and private keys,
as well as signatures is the same. The information necessary to describe such an entity is
summarized in the following structure:

typedef struct pwnc_key {

unsigned short algorithm;

unsigned short bits;

unsigned int datalen;

unsigned char *data;

} PWNC_PUBKEY, PWNC_PRKEY, PWNC_SIG;

The algorithm field indicates the cryptosystem used. It may take one of two possible values
for RSA and Elliptic Curve cryptography respectively. The bits field shows the bit length
of the keys used. That is, if using RSA cryptography with 1024 bit keys, this field has a
value of 24. The actual key or signature data are stored in the data byte array whose length
is datalen bytes. The content of the data byte array is specified in detail in Sections 3.3.1
and 3.3.2.

4.1.1.1.2 Client Certificate Format A client certificate is represented internally by the
following C struct:

typedef struct pwnc_certificate {

PWNC_PUBKEY *TeamPubKey;

PWNC_PUBKEY *UserPubKey;

PWNC_SIG *TeamSig;

} PWNC_CERT;

As one can see, a certificate is defined making use of the structure defined in the previous
paragraph. Note that, although the members of the pwnc certificate struct seem to be of
different types, they actually have the same structure, since they all pwnc keys.

39

4.1.1.1.3 Receipt Format The C struct that represents a receipt in the P2PWNC pro-
tocol reference implementation makes use of the structs defined for keys, signatures and
certificates. It is shown below:

typedef struct pwnc_receipt {

PWNC_CERT *ConsumerCert;

PWNC_PUBKEY *ProviderPubKey;

unsigned long timestamp;

unsigned long weight;

PWNC_SIG *RcptSig;

} PWNC_RCPT;

As their names imply, the ConsumerCert field represents the certificate of the service con-
sumer, the ProviderPubKey is the public key of the service provider, the timestamp indi-
cates the exact time that the session started and the weight field is the amount of traffic
forwarded by the access point during a session. Finally, the RcptSig represents the receipt
signature, produced by the service consumer. For details on the semantics of the above
fields and a high-level description of the routine used for generating and signing a receipt
see Section 3.3.4.

4.1.1.2 Conversion Routines

Since the internal representation of data is different than the format used when data are
transmitted across a network, there is a need for routines that convert data from one format
to another. Input to these routines are objects represented as described previously (e.g.
pwnc key or pwnc rcpt objects) and their output are text messages. Conversely, there are
routines that take text messages as input and produce internal structs. Therefore, there are
two layers involved in the above description.

Figure 4.1 shows the high level view of the procedures taking place when sending and
receiving a P2PWNC protocol message.

4.1.1.3 Input/Output Operations

This module is responsible for I/O operations performed by the P2PWNC software mod-
ules. Such operations include permanently storing and retrieving data and sending and
receiving data from network. As of this section, two data formats have been defined; the

40

Figure 4.1: Message conversions

network format, which is specified by the P2PWNC protocol and the internal data repre-
sentation. Now a compact format designed for storing data permanently is introduced.

4.1.1.3.1 Compact Data Representation This format is implementation dependent.
That is, implementors may choose a storage scheme that best suits their needs. Since
our software is aimed at memory and storage constraint devices, the main purpose of this
design is compactness. To achieve compactness, storing data in text format is out of the
question. Rather, data are stored in raw format, as plain byte arrays with the addition of
some extra fields indicating properties of the data such as the length of the above arrays.

The main information unit in the P2PWNC scheme is a receipt. The receipt repository
thus stores such objects. In this paragraph, the way these data are stored on permanent
storage devices (hard disks, flash cards) is specified. Figure 4.2 shows the structure of a
receipt as stored using its compact representation.

The first byte of this structure, denoted by “A” in the figure, indicates the encryption
scheme used. If its value is 0 then elliptic curve cryptography is used. If it is 1, then the
RSA cryptosystem is employed. This field is followed by the bit length that characterizes
the cryptosystem. For example, in the case of 1024 bit RSA keys, the value stored in
this two-byte field is 1024. In a similar fashion, if an 160 bit elliptic curve is used, this
value is 160. Following that, there is a field that shows the total length of this structure.
Since the largest key length permitted by the P2PWNC protocol is 2048 bits, two bytes

41

Figure 4.2: Compact representation of a receipt

are adequate to represent the length of the compact representation of a receipt, without the
risk of overflowing. Next, there is the receipt timestamp for which four bytes are reserved.
The next four bytes are the receipt weight, that is the amount of bytes forwarded by the
access point on behalf of a client during a session. The remaining part of the structure is
occupied by the client certificate, the public key of the service provider and, finally, the
receipt signature. As stated in Section 3.2.2, the key algorithm used by a team member is
the same as that of the key issuer. Thus, the fields of a receipt where the key algorithm
and its bit length are specified provide enough information to calculate the length of the
certificate fields as well as the length of the receipt signature. For example, if a receipt
was generated by a client who uses 1024 bit RSA keys, one can safely conclude that the
length of the certificate’s team and user public keys, the certificate’s signature as well as the
receipt signature are all 128 bytes long. However, there is no information on the length and
the algorithm associated with the service provider’s public key. This is the reason why the
total length field on the compact receipt representation is necessary; subtracting the length
of the keys and signatures whose encryption algorithm is known, the receipt timestamp and
weight, and the bits and total length fields yields the length of the provider public key in
bytes.

Representing other structures such as public keys in compact format when storing them
permanently is of little importance, since their volume is negligible for the system, com-
pared to that of the receipts. Public and private keys and certificates may be represented
either in a raw (compact) format or in plain ASCII text, with a header indicating the algo-
rithm used (e.g ECC160), followed by a CRLF sequence, and the actual data, which are
Base64-encoded.

4.1.1.3.2 Network I/O Receiving and transmitting messages over the network is the
other task of this module. Receiving messages is performed in a unified manner for all

42

protocol messages. Having stated that all system messages have the same generic format
(see Section 3.1.3.2), parsing is easy. The first two message headers indicate the type of
the message (e.g. RCPT, UPDT) and the length of the data that follow (Content-length
header). The routine that receives messages takes a socket identifier as input and returns
the text message that was read, as well as its type so that it will be dispatched to message-
specific parsing routines. As an example, the prototype of the message receiving routine
used in our C implementation of the P2PWNC scheme is presented.

unsigned char* read_message(int sockfd, int *mtype);

The first argument of this function is the socket descriptor from which data will be received.
After the function has returned the text message read, mtype will be set to the type of
the received message. The text message that this function returns will then be passed to
a message handling routine. For example, in case of an RCPT message, a routine that
converts text RCPT messages to the internal receipt format (see Section 4.1.1.1) will be
called.

On the other hand, when a message is to be sent, conversion routines (see Section
4.1.1.2) will be called so that internally-represented data will be transformed to or embed-
ded into text messages. These text messages will then be written to a socket so as to be
transmitted to a receiving entity.

4.1.2 Cryptographic Operations

Cryptographic operations are based on third party libraries. In our reference implementa-
tion we make use of the OpenSSL [7] library for the modules written in C and the Java
Cryptography Extension (JCE) [3] packages for our Java-based clients. Regardless of the
implementation of the cryptography related operations, associated structures such as pub-
lic and private keys must be converted from the vendor-specific to the internal P2PWNC-
specific representation that was described in Section 4.1.1.1.

The cryptographic operations module provides functionality for generating key pairs
and P2PWNC certificates, signing and verifying certificates and receipts and converting
from the internal P2PWNC format to vendor-specific formats. In this module, the proce-
dures for generating certificates and receipts, as specified in Sections 3.3.3 and 3.3.4, are
implemented.

43

4.1.3 Multithreading

In the P2PWNC protocol reference implementation presented here, most software mod-
ules make use of multithreading. For example, the access point module starts a new thread
for each client session and the team server module has a separate thread for each request.
A major advantage of using multiple threads over spawning new process images for each
request is that there is less memory overhead, since different threads share the same re-
sources. This is crucial for modules such as that of the team server, where all threads must
have a view of the receipt repository; creating a child process (via the fork system call, for
example) for each new request would require the memory context of the parent process to
be copied, thus resulting in huge memory squandering. Also, a new process created via the
fork system call is more time-expensive due to costly context switching.

In the C implementation of the P2PWNC system, that runs under Linux, the POSIX
threads (libpthread) package is used. A variant of the boss/worker design pattern has been
developed. This model is described next.

The main thread(boss) of the multithreaded server is responsible for dispatching client
requests to handling threads(workers). Each thread is bound to a TCP connection. Thus,
each time a new TCP connection is accepted by the server, a new thread must be started to
handle the client request. Such threads act independently, apart from the fact that they may
share some resources. For example, in the TCA module, the client threads share the receipt
repository. Shared resources are protected by mutices, which are defined by the application
that uses the thread module. When the client session is to end, the worker thread must exit.

Since resources are limited, especially in the case of software modules that run on em-
bedded platforms (e.g. access points), and as a means of avoiding denial of service attacks,
the main thread must control the number of client threads that are currently operating.
Thus, there is a thread pool of fixed length from which a new client thread is picked in
the event of a new session. If all the threads of the pool are occupied, then the session
is rejected. When a session is terminated, then the thread responsible for that session is
returned to the pool so that it can be used to serve future client requests.

Each element of the thread pool is described by the following C struct:

typedef struct _client_thread_t {

pthread_t client_thread;

int is_free;

} CTHREAD;

44

The client thread field is the actual thread identifier and the is free field indicates
whether this thread is in use for a client session (value 0 if it is occupied). Whenever a
new TCP connection is accepted, the thread pool is searched linearly so that the first free
thread is located. Linear search is expensive. In practice, though, the size of the thread
pool is expected to be small (that is, a few hundred elements at most), so the overhead
imposed is negligible. As soon as the free thread is located, the new thread is started. In
the pthreads package, a new thread is created via the following call:

int pthread create(pthread t *thread, pthread attr t *attr,

void *(*start routine)(void *), void *arg);

The attr pointer in the above definition is ignored. The thread field represents the thread
identifier. The start routine argument is a pointer to the function that the thread will ex-
ecute. This function is defined by the application. Finally, the arg field represents the
arguments that are passed to start routine as soon as the new thread has started.

In our case, when it comes to one of the threads of the thread pool, this function is never
called directly. Instead, the start new thread routine has been implemented. Its definition
is as follows:

void start new thread(void *thread func, int sockfd);

The thread func argument is the client handling thread function that will be passed as a
parameter to pthread create. sockfd is the TCP socket over which the multithreaded server
communicates with a client.

Since the thread pool is shared among many threads, there is a mutex that controls
access to it. Its definition is shown below:

static pthread mutex t thread pool mutex;

When the “boss” thread is about to start a new “worker,” it attempts to lock this mutex.
After picking up a thread from the pool and starting it (or after failure to do so due to lack
of free threads), the mutex is unlocked. In a similar fashion, when a thread is about to
exit, the mutex is acquired by the exiting thread, the element of the pool is marked as free

(setting is free to 1) and the mutex is released.
One subtlety that has not yet been discussed is how a running thread knows its position

in the thread pool array and the socket descriptor of the connection that it serves. This
problem is solved via the argument that is passed to the thread handling function (thread -

func) discussed above. The generic prototype of such a function is as follows:

45

void thread func(THREAD INFO *ti);

The THREAD INFO data type is defined as follows:

typedef struct _client_thread_info_t {

int client_socket;

int thread_index;

} THREAD_INFO;

The client socket field is the socket that corresponds to the client session handled by the
thread and thread index is the index of the specific thread in the pool array. The ti argument
of thread func is generated inside the start new thread function, using the sockfd argument
that is passed and searching through the thread pool array to find a free position.

4.2 Receipt Repository

4.2.1 The Role of the Module

The role of the receipt repository module is to store receipts, answer queries as to whether
a client requesting service should eventually be admitted in a visited network and, in some
cases, to answer range queries with the receipt timestamp as the search criterion.

Receipts may be stored by various system entities. Starting with the centralized case,
receipts need only be stored at a central repository by the TCA. Clients and access points
need not carry any receipts; newly generated receipts are automatically send to the TCA. In
the decentralized case, on the other hand, there is no global central receipt repository. For
each team there is a team server, the (logical) entity that is responsible for receipt storage.
Also, there must be a storage module in the client software, since mobile users tend to
carry receipts with them to present them to the visited access points at the beginning of a
session. It should also be noted that a team server may be collocated with one of the access
points of a team.

The core functionality of the receipt repository is the same for both the centralized
and the decentralized case. The exception to this rule is that in the decentralized case
it is necessary that the repository server should be capable of answering UPDT queries.
Also, the storage module on the client side may be more lightweight, since it need not be
equipped with decision function capabilities.

46

4.2.2 Supported Operations

From the above discussion it occurs that there is a need for a versatile data structure that
should be able to perform the following operations efficiently:

� Insertion
Receipt insertions will be taking place quite often, especially in case the receipt
repository is global. Thus, the data structures employed should provide for fast in-
sertion.

� Deletion
Receipt deletion will be taking place mainly during receipt replacement. That is,
when the receipt repository is full, a new receipt will replace the one with the oldest
timestamp, since the receipt timestamp is a criterion for deciding on receipt validity;
the older a receipt, the less valid it is for the P2PWNC system.

� Search
Searching for a receipt using its timestamp as the key of the search is necessary when
attempting to locate the oldest receipt of the repository or when trying to answer an
UPDT query.

� Receipt lookup
Receipt lookups are performed when a receipt is about to be inserted in the repository
to check if a receipt already exists in the database.

� Team lookup
Looking up a team is mainly performed when there is a query on whether access
should be granted to a client. It is necessary that the identifiers of the two teams
involved in a transaction (provider and consumer public keys) are located so that
they will be passed as input to the decision function.

� Receipt range queries
Such queries may be issued to the receipt storage module by a team server in case an
UPDT client message has been received. As has already been specified (see Section
3.1.3.4), an UPDT message contains a timestamp field. This will be used in the range
query. Namely, the receipts with timestamps greater or equal to it will be the query
output.

47

� Graph operations
Finally, apart from the above operations, the data structures representing the receipt
repository should be capable of performing graph operations. This repository can be
represented by a weighted directed graph, whose edges are receipts and vertices are
teams. Graph operations are performed during the execution of the decision function,
which is based on discovering the maximum flow between two graph nodes.

4.2.3 Module Architecture

The operations that should be supported by the receipt repository module, as mentioned in
the previous paragraph, suggest that a composite data structure should be used to satisfy
their diverse needs as far as efficiency is concerned. Graph operations need a representation
of the graph by a structure such as an adjacency list or an adjacency matrix. Such a data
structure on its own, though, would not be appropriate to search for a receipt using its
timestamp as a key or performing other dictionary operations.

The approach that was adopted is to build a composite data structure that includes hash
tables that store pointers to the teams and receipts, an adjacency list representation of the
receipt graph and a red-black tree [23] where each node has a pointer to a receipt and node
keys are receipt timestamps. These data structures combined provide an efficient means of
carrying out the necessary receipt repository operations. Figure 4.3 shows the architecture
of the receipt database module.

4.2.3.1 Team and Receipt Hash Tables

As one can see, there are two hash tables. One that stores pointers to structures that repre-
sent system teams and one that contains pointers to receipt structures. These hash tables are
used to speed up receipt and team lookup. Specifically, insertion and lookup take constant
time. The C struct representing a receipt (PWNC RCPT) is shown in Section 4.1.1.1.3.
Team information are kept in a struct shown below:

typedef struct __pwnc_team {

PWNC_PUBKEY *team_pk;

int served;

int consumed;

double credits;

AL_HEAD *graph_node;

48

Figure 4.3: Receipt repository architecture

}PWNC_TEAM;

The team pk field, as its name implies, is a pointer to the team’s public key, represented in
its internal format. It should be noted again that a team’s unique identifier for the P2PWNC
system is its public key. The fields served and consumed show the number of times
access points of this team have provided service and the number of times that its members
have consumed service respectively. Also, credits contains the total amount of service
a team has provided, measured in kilobytes. These fields may useful for some decision
functions, but may also be ignored by the application. Additional fields may also be added
to this struct, in case a new decision function that is to be built makes use of them. Finally,
graph node is a pointer to a head list node of the receipt graph. The head list is a singly
connected list of nodes, each of whom represents a (consumer) team in the graph. In Figure
4.3, this list is denoted by the singly-connected labeled squares in the receipt graph. The

49

details of the graph representation will be explained in Section 4.2.3.4.
Hash tables provide for %'&)(+* -time insertion, deletion and search operations. lhash,

the dynamic hash table implementation included in the OpenSSL package is used. The
application that makes use of this library needs to define the hash function that wishes
to be used for a hash table. Therefore, in the receipt repository module, different hash
functions have been defined for the receipts and teams hash tables, since the two tables
store pointers to different structures.

In the implementation used, hash functions take a pointer to a structure as input and map
it onto a 32 bit integer number, based on the structure’s key. This key is the identifier of
the structure. For example, the identifier of a PWNC TEAM structure is the team’s public
key, that is the team pk->data field. Note that the key field is not defined anywhere
explicitly. Rather, the user defined hash function is responsible for discerning which fields
of the struct will be treated as its unique identifier. How the mapping of the input struct on
the 32 bit integer space will be performed is application dependent. Care should be taken,
though, since the mapping over the 32-bit integers should be as uniform as possible. For
example, for the case of PWNC TEAM structs, one may choose the first four bytes of the
team pk->data field, as public keys tend to be quite random arrays of bytes.

In the case of PWNC RCPT structures, the unique identifier of a receipt is the following
tuple:

� Consumer certificate, Provider public key, Receipt timestamp
The hash function here operates in a similar manner. Since during a client session more
that one receipts with the same key may be generated, only the last one of them is valid,
that is the one with the highest “weight” value (represents the last receipt sent by the client,
which is the one that characterizes the session).

More information on the lhash library can be found in the lhash Linux manual pages
or in the OpenSSL online documentation [7].

4.2.3.2 Red-black Trees

4.2.3.2.1 Properties Red-black trees [23] are a special case of balanced binary search
trees. Each node contains a field that indicates its color, which can either be red or black.
A binary search tree is a red-black tree if it satisties the following properties:

1. Every node is either red or black

50

2. The root is black

3. Every leaf is black

4. If a node is red, then both its children are black

5. All paths from a node to descendant leaves contain the same number of black nodes

Each red-black tree node has pointers to its parent, its left child and its right child. In case a
node does not have a parent or a child, the respective pointers point to a special NULL node
whose color is black, so that property 3 is not violated. The parent, left and right pointers
of the NULL node are ignored and can be set to arbitrary values.

It can be shown that the height of a red-black tree is at most ,.-0/213&�4657(+* . That is,
such a tree is approximately balanced. Insertion, deletion and search for a node are thus
performed in %'&8-0/21�4$* time.

4.2.3.2.2 Applicability In this section the applicability of the use of red-black trees for
receipt storage will be argued. First, red-black trees offer worst case logarithmic search,
insertion and deletion time, as opposed to splay trees [26], where the logarithmic time
bounds stem from an amortized analysis. Also, splay trees are not efficient when it comes
to accessing tree elements in sorted order. This operation is performed, for example, in the
case of an UPDT message where all nodes (receipts) with key (timestamp) greater or equal
to a specified value are returned. Since each time an item is accessed it is moved to the root
of the tree, re-accessing the first retrieved element of the sorted sequence would require%'&84$* time.

Second, receipts are all stored in main memory, since they need to form a receipt graph,
upon which a maximum flow algorithm is run. Thus, a red-black tree is more suitable than
a B-tree structure, since the latter is optimized for minimizing disk accesses and is designed
for large data sets residing in secondary storage.

A normal binary search tree is also out of the question. The nature of the data stored in
the tree, that is receipts, implies that, as soon as the receipt database is full, older receipts
will be replaced by new ones. Since the key of the tree nodes is the receipt timestamp,
receipts from the left end of the tree will be removed and new receipts will be added to the
right end of the tree. Therefore, the tree will gradually degenerate to a linked list, resulting
in %9&�4$* runnning time for search, insert and delete operations.

A data structure whose applicability is comparable to that of red-black trees are AVL
trees [12]. AVL trees are balanced binary search trees. For each node x, the heights of the

51

left and right subtrees of x differ by at most 1. Height balancing is stricter that in red-black
trees, but rebalancing after an insertion and deletion is more costly (albeit still logarithmic).

Red-black trees are also more suitable for the needs of the receipt repository module
due to the fact that they can easily be converted to a persistent data structure. Such data
structures allow for versioning of the instances of data; that is, past versions of the data
set can be maintained as the set is being updated. This may be important for the P2PWNC
receipt repository in case there is a need to store receipts temporarily, perform operations on
the updated data set (e.g. execute the decision function) and, finally, restore the repository
to its previous state (i.e. before inserting the temporary receipts).

4.2.3.2.3 Implementing Red-Black Trees For the needs of the P2PWNC software, a
C implementation of red-black trees is supplied. This implementation is as generic as
possible and thus independent of the actual type of the data that are stored in it. A tree
node is represented by the following C struct:

typedef struct rbtree_node_t {

void *data;

struct rbtree_node_t *left, *right, *parent;

unsigned short color;

void* (*key_func)(struct rbtree_node_t *);

int (*comp_func)(

const struct rbtree_node_t *,

const struct rbtree_node_t *);

void (*set_key_func)(struct rbtree_node_t *, void *);

} RBTNODE;

As one can see, the data stored in a tree node are represented by the data pointer, whose
type is not specified. The left, right and parent pointers are self explanatory, and
so is the color member. The latter, can take one of the values NODE COLOR RED or
NODE COLOR BLACK (constants).

The three function pointers are callbacks that have to be defined by the application.
Their roles are explained below:

key func This function takes a tree node as an argument and returns the node’s key. The
calling function must cast the returned value of key func to the appropriate type.
For example, in a tree that contains receipts which are keyed by their timestamp, this
function returns the timestamp of the receipt. key func may be called as follows:

52

RBTNODE *node;

...

unsigned long ts = (unsigned long)node->key_func(node);

It is supposed that node has already been initialized and that the key func call-
back has been implemented by the application so that it returns the timestamp of the
receipt included in the node’s data.

comp func This callback compares two nodes according to their keys. It is used when
performing tree operations, such as search, insertion or deletion. It returns -1, 0 or
1 if the first argument’s key is less than, equal or greater than that of the second
argument respectively. comp func normally makes use of key func.

set key func As its name implies, set key func sets the key of a node (first ar-
gument) to the specified value(second argument). The type of the key value is not
specified in the above definition. The application where this callback is implemented
needs to perform the necessary type castings.

The above callbacks need to be specified for every tree node and should be the same for
all these nodes. It is convenient for application developers that wish to use this red-black
tree implementation to create a routine that allocates memory and initializes a tree node,
passing it pointers to the implemented callbacks, among other arguments. An example of
the prototype of such a function is shown in the following example:

RBTNODE *RBTNODE_new(

PWNC_RCPT *rcpt,

const void *key_func,

const void *set_key_func,

const void *comp_func);

The application that makes use of the red-black tree library does not need to know the
details of the implementation. It is adequate to implement the above callbacks and use the
following API calls:

� void rbtree insert(RBTNODE **tree, RBTNODE *z)

This function inserts node z to the tree. It also handles tree rebalancing.

53

� RBTNODE *rbtree delete(RBTNODE **tree, RBTNODE *z)

This function removes node z from tree and returns a pointer to it. z may have been
returned by a prior call to rbtree find min or rbtree find node.� RBTNODE *rbtree find min(RBTNODE *tree)

Returns a pointer to the node with the minimum key in the tree. In fact, this function
starts from the root of the tree and follows the left pointers. The leftmost node of a
red-black tree is also the minimum.� RBTNODE *rbtree find node(RBTNODE *tree, RBTNODE *node)

Finds and returns a pointer to a tree node whose key value is equal to node’s key.
node is an artificial node, constructed by the calling function and need only have its
key, key func and comp func set.� void rbtree range query(

RBTNODE* tree,

void (*do stuff)(RBTNODE*, void *),

void *do stuff args,

RBTNODE *node)

This routine performs a variant of a range query on the tree nodes. In particu-
lar, nodes with keys greater than or equal to the key value of node are processed.
rbtree range query visits the appropriate nodes in an in-order fashion. How-
ever, it does not visit all of them; rather, it is called recursively for the left subtree of
the current node only in case its key value is greater of equal to node’s. For each
visited node, do stuff is called and it is passed do stuff args as an argument.
The do stuff callback and its argument are application dependent. Its time com-
plexity is %9&84:* , where 4 is the number of tree nodes, which is asymptotically equal to
that of a normal in-order tree traversal. However, as far as the P2PWNC software is
concerned, a red-black tree is used for receipt storage and such queries will normally
request receipts with recent timestamps, which reside near the rigthmost end of the
tree. Thus, visiting only the necessary nodes will result in important performance
gains.

4.2.3.3 Permanent Receipt Storage

Apart from residing in the system’s main memory, receipts may also be put in secondary
storage (e.g. hard disks or flash cards). Thus, each time a new receipt arrives, it is inserted

54

in the hash table, in the red-black tree, in the receipt graph and in permanent storage. As
has been stated in Section 4.2.3.2, insertion takes time logarithmic on the number of the
tree nodes. To take full advantage of that property, we need to be able to write the receipt
on disk in constant time. That is, the position where the data will be written permanently
must be located as fast as possible. In the following, the way data are stored is explained.

Receipts are written in a file sequentially. Each record in this file has fixed length,
equal to the maximum size of a receipt in its compact format (see Section 4.1.1.3.1) that
is permitted by the protocol (such a receipt uses 2048 bit RSA keys). When a receipt is
removed from the tree, the position it occupied in the receipts file is marked as deleted so
that it can be overwritten by a new receipt. The positions (slots) that are free (as a result
of receipt deletions) are stored in another file. This file stores a stack of free slots. In the
event of a new receipt insertion, a free slot is popped from that stack and the new receipt
is written there. Conversely, when removing a receipt from the repository, the slot that it
occupied is released and is pushed back in the stack.

Locating the slot where a receipt is written is performed as follows. In the data field
of a tree node a structure that is shown below is stored:

typedef struct rbtree_rcpt_data_t {

PWNC_RCPT *rcpt;

AL_NODE *graph_entry;

int disk_pos;

} RBTREE_RCPT;

The rcpt field is a pointer to the actual receipt. graph entry points to the receipt graph
edge that corresponds to this receipt, as explained in Section 4.2.3.4. Finally, disk pos

is the position of the receipt record in the file. Note that disk pos is measured in records
rather that in bytes. Therefore, to access the receipt as stored in the file, one has to calculate
its exact position multiplying disk pos by the maximum receipt size. Then, a transition
to that position is performed via a call to the fseek function.

4.2.3.4 Receipt Graph

Having stated that there needs to be a graph representation of the receipt repository, the
graph data structure used for this purpose is to be described in this section.

To represent the graph an adjacency list data structure has been developed. It is com-
posed of a singly-linked list of “head” nodes, each of them representing a P2PWNC con-
sumer team. Nodes of this list have the following format:

55

struct adjacency_list_head_t {

int label;

int color;

int height;

int discharged;

long excess;

struct adjacency_list_rcpt_node_t *neighbors;

struct adjacency_list_rcpt_node_t *last_neighbor;

struct adjacency_list_head_t *next_head;

unsigned short node_state;

struct incoming_edge_list_node_t *incoming;

struct incoming_edge_list_node_t *last_incoming;

struct __pwnc_team *team;

};

typedef struct adjacency_list_head_t AL_HEAD;

The fields label, color, height, discharged and excess have to do with the
maximum flow algorithm used by the decision function. The same apply for the node -

state, incoming and last incoming fields, which are used but the global relabel-
ing maximum flow algorithm heuristic (see Section 4.2.3.5).

Each AL HEAD represents a graph node. Graph edges correspond to receipts and are
directed from the consumer to the service provider node. For each node of the head list,
there is a doubly connected list of the service providers to whom the head node owes
service. This doubly connected list represents the edges that are directed from this graph
node to others and is accessed via the neighbors pointer, which is its first node. Each
of its nodes represents a receipt which has this AL HEAD node as the consumer and some
other AL HEAD as the provider. The provider is represented by a field of the neighbor
list node, whose stucture will be shown next. The next head member points to the next
element of the head list. Finally, team is a pointer to a PWNC TEAM structure, as described
in Section 4.2.3.1.

It should be noted that a graph edge may correspond to more that one receipts, since all
receipts from a team A to a team B are merged to one edge, whose weight is the sum of all

56

;=< >
receipts. This is done to avoid representing the receipt graph as a multigraph, and

thus achieve the desired time complexity of the graph algorithms used.
The structure of the graph edges is shown below:

struct adjacency_list_rcpt_node_t {

struct adjacency_list_rcpt_node_t *next;

struct adjacency_list_rcpt_node_t *prev;

struct adjacency_list_head_t *myhead;

struct adjacency_list_head_t *consumer;

int saturated;

long weight;

long residual_weight;

int is_foo;

struct incoming_edge_list_node_t *incoming_ptr;

};

typedef struct adjacency_list_rcpt_node_t AL_NODE;

Since it is a doubly-connected list node, next and prev pointers can be used to traverse
it in both directions. The source and the destination of an edge are represented by AL -

HEAD objects. Thus, the myhead member points to the service provider (destination of
the edge) and consumer points to the edge source. In fact, consumer points to the
head node to which this edge list belongs. The weight field, as its name implies, shows
the edge weight. The saturated, residual weight and is foo fields are used by
the maximum flow algorithm. The meaning of incoming ptr will be explained next.
Figure 4.4 depicts the adjacency list receipt graph representation.

For the needs of the maximum flow algorithm, a list of the incoming edges of each
node should be kept, since it is required for the backwards BFS execution in the global
relabeling heuristic (see Section 4.2.3.5). For each graph node, there is a doubly-linked list
of its incoming edges. The C struct that follows represents a node of this list:

typedef struct incoming_edge_list_node_t {

AL_NODE *node;

struct incoming_edge_list_node_t *next;

struct incoming_edge_list_node_t *prev;

} INCOMING;

57

Figure 4.4: Adjacency list representation of receipt graph

The node field is a pointer to the edge that this list node represents. In a similar manner,
node->incoming ptr points to this list node. Figure 4.4 may clarify this description.

4.2.3.5 Maximum Flow Algorithm Implementation

4.2.3.5.1 Terminology The graph data structure described in Section 4.2.3.4 is used
for running a maximum flow algorithm, which is the core of the basic family of decision
functions proposed in the P2PWNC scheme. For the needs of these functions, a version
of the push-relabel maximum flow algorithm has been implemented. In particular, a first-
in-first-out variant of the generic push-relabel algorithm [22] is being used. To improve
the efficiency of this algorithm the global relabeling heuristic has been applied [14]. In
the remainder of this section, the operation of this maximum flow algorithm, as imple-
mented in terms of the P2PWNC software, is described. A performance evaluation of the
implementation presented here follows in Section 5.4.

The maximum flow algorithm takes as input two vertices of the graph and computes

58

the maximum amount of flow that can be pushed along the edges of the graph from the
source to the sink vertex, without violating the capacity constraints of the edges. Namely,
the maximum amount of flow that can be pushed along an edge is the edge’s weight.

In push-relabel algorithms, for each vertex there is a height function, which is in fact
an estimate of the distance of this vertex from the destination. Each node also maintains
an amount of flow that is to be pushed to neighboring nodes via its outgoing edges. This
amount is called the excess flow of a vertex and the respective node is called overflowing.
The height and excess fields of the AL HEAD structure represent the above. An edge
through which no more flow can be pushed is called saturated (the respective field of the
AL NODE struct). When an edge is not filled to capacity, the amount of flow that it still
admits is called the edge’s residual capacity and is denoted by the residual weight

field of AL NODE. When pushing ? units of flow over the @ <BA
edge, its residual capacity

is decremented by ? , while the residual capacity of
AC< @ is incremented by ? (in our

implementation, if
AD< @ does not exist, it is added to the graph and is marked as “foo”; this

is the meaning of the is foo field of AL NODE). Such an operation results in a modified
graph, called residual graph. For a strict and complete definition of these terms, see [22]
and [14].

4.2.3.5.2 Basic Operations The basic actions of the maximum flow algorithm are push-
ing flow along an edge and relabeling a vertex. By relabeling, increasing the height of a
vertex to the height of its lower neighbor plus one is meant. Pushes can be further cate-
gorized in saturating and non-saturating. As implied by their name, saturating pushes fill
an edge to capacity. In our implementation, a saturated edge disappears from the residual
graph (In fact, it does not disappear; rather, it is moved to the end of the list of outgoing
edges of the respective head node and marked as saturated. After the maximum flow has
been terminated, the graph is restored by marking the edge as non-saturated and setting its
residual weight to the original edge weight). On the other hand, non-saturating pushes may
cause a new edge to be added to the residual graph (this edge is marked as “foo” and is
removed from the graph during the restoring procedure that was just mentioned).

4.2.3.5.3 The Push-Relabel Algorithm For the needs of the algorithm presented here,
a FIFO queue is used for keeping the vertices that are overflowing, and will be referred to as
active nodes. A short description of the operation of the algorithm will now be presented.
In this description, the maximum flow from a node E to a node F of a graph GIHJ&�K!LNMO* is
calculated, where K is the set of vertices and M is the set of edges of the graph.

59

Initialization involves setting the height of the source to PQKRP and the height of all other
nodes to 0. The algorithm starts by pushing as much flow as possible from the source to
its neighboring nodes, thus filling its outgoing edges to capacity and saturating them, and
generating an initial preflow. The newly-overflowing vertices are inserted in the queue of
the active nodes.

The algorithm then continues by repeatedly removing an active node from the queue
and pushing as much flow as possible to neighboring nodes via its outgoing edges. In this
phase, new nodes may be pushed in the queue. When the vertex in consideration is no
longer overflowing or no more flow can be pushed via non-saturated edges, the node is
relabelled. This procedure is called vertex discharging.

The algorithm terminates when there are no more active nodes in the queue. The value
of the excess of vertex F is the computed maximum flow from E to F .
4.2.3.5.4 The Global Relabeling Heuristic The above algorithm runs in %9&�KDS�* time.
This upper bound, though polynomial, has proven poor for the needs of the P2PWNC sys-
tem. Therefore, the global relabeling heuristic has been implemented. As to this heuristic,
in the beginning of the execution of the maximum flow algorithm and periodically, the
height values of the graph vertices need to be updated. Since, the height of a node is an
estimate of its distance from the terminal node, a more accurate value is obtained via this
method.

To update the height values, a backwards Breadth First Search is performed, starting
from the terminal node. After BFS has been executed, the height fields of the vertices
contain the length of the path from each node to F (measured in edges). In order to run a
BFS backwards, the lists of incoming edges are used (see 4.2.3.4).

In the P2PWNC reference implementation, the above procedure takes place every K
relabel operations. In comparison to the push and relabel operation, BFS is an expensive
task, since it requires TU&�KV5WMO* time. However, as it seems, it is performed rather rarely.
According to our experiments (see 5.4), as well as related work [14], the performance of
the maximum flow algorithm is dramatically improved by this heuristic.

60

4.2.4 Decision Algorithms

4.2.4.1 Decision Algorithm as a Pluggable Module

In the event of a roamer visiting a foreign access point, the potential provider team needs
to decide whether or not the visitor will be granted internet access. In order to come to this
decision, the access point will normally consult the receipt repository module, since the
information on which the decision will be based reside in it.

In the centralized case, the module responsible for making suggestions to the access
point on the decision to take is the Trusted Central Authority. In the decentralized one,
each team may follow the advice of its team server.

Since the P2PWNC is a framework that provides agents with independency concerning
such decisions, the access point can choose its own access provision algorithm. An impor-
tant family of decision algorithms is based on the maximum flow algorithm presented in
Section 4.2.3.5. Work that is in progress [19] [18] suggests that this family of functions
supplies agents with the right incentives that promote cooperation between them.

As to the P2PWNC reference implementation, care was taken so that it will be easy
for third party developers to implement their own decision algorithms and embed them to
the existing scheme. The input to every decision function should be the identifiers of the
provider and the consumer team. In the case of this scheme, teams are identified by their
public keys. The prototype of the decision function is shown below:

int rdb_judge(

PWNC_PUBKEY *consumer, PWNC_PUBKEY *provider)

This routine implements the decision algorithm and returns 1 to recommend that access
should be granted and 0 otherwise. As it seems, the calling applications need only be
aware of the function’s interface. It is supposed that the generic data types such as PWNC -

PUBKEY are implemented by all protocol entities.
It is also supposed that the necessary functionality needed by the decision algorithm

is implemented by the decision function developer. This includes any underlying data
structures used by the decision function. For example, when applying the maximum flow
algorithm to decide if access should be granted, data structures to represent the receipt
graph must be provided.

In the following, the implementation of two decision functions will be presented. First,
a simple score-based algorithm will be shown and, second, a more sophisticated method
based on the maximum flow algorithm presented in Section 4.2.3.5 will be described.

61

4.2.4.2 Score-based Decisions

In this section, an access algorithm based on service provision measurements is presented.
Since access points measure traffic forwarded on behalf of roamers, the total amount of
service a tream has provided is the sum of kilobytes that the team’s access points have
forwarded. This sum is used as the team’s score (which from now on can be referred to as
a team’s credits).

In the event of a client visiting a foreign access point, the decision whether access
should be granted to the client is based on the ratio of the score of the consumer team to
the score of the team providing service. Access is granted with probability equal to that
ratio (or 1, if the ratio is greater that 1). Note that in case the provider’s score is equal to
zero, access should be granted. This implies that a client whose team score is greater to
that of the provider team will certainly be granted access. The above are summarized by
the following formula.

X &�Y[Z�Z]\+E+E+*!H
^_a` (if Z�b�\dc[e8FfE[& X b2*�HVghUikj � (2L Z�b�\dcle�FfE[&�mn*Z�b�\dcle8FfEo& X b�* � otherwise

(4.1)

In the above, the provider and consumer teams are denoted by
X b and m respectively,X &�Y[Z�Z]\+E+E+* is the probability that the client will be granted access. Z�b�\dc[e8FfE[& X b2* and Z�b�\dcle�FfE[&�mn*

are the scores of the provider and the consumer teams respectively, measured in kilobytes.
The implementation of the above decision function is rather straightforward. In our

C implementation, the credits field of the PWNC TEAM struct (see 4.2.3.1) is used for
the representation of a team’s score. Each time a new receipt is added, the score of a
team is adjusted accordingly. When the rdb judge function is called, a fast lookup is
performed on the hash table storing the system’s teams so that pointers to the provider and
the consumer teams taking part in a (potential) session are retrieved. The function returns
success (1) or failure (0) with probability X &�Y[Z�Z]\+E+E+* , computed according to the above
formula.

The above decision function behaves well in peer populations composed of peers that
adhere to this function, malicious peers that refuse to grant access when they ought to and
others who provide service in an altruistic manner. However, this decision algorithm is not
collusion-proof; peers may start reporting fake transactions so that they can increase their
scores. A workaround to this may be to use the ratio of a peer’s service provision to service
consumption instead of just the amount of service provisions.

62

4.2.4.3 Maximum Flow-based Decisions

Having presented the implementation of the maximum flow algorithm, its use in terms
of the decision function will now be shown. In this case, the total amount of service a
team has offered is not used explicitly. Rather, when judging if a client deserves to be
served by an access point, the maximum flow of provided service between the two teams
involved in the transaction is considered. Namely, since there is a receipt graph whose
edges denote service provision, running the maximum flow algorithm between two graph
vertices (teams) returns the amount of service that the source team indirectly owes to the
destination team.

From the above discussion it appears that peers should reciprocate service directly to
each other or indirectly via other peers. The example of Figure 4.5 will make things clear.
In this figure, the maximum flow from team A to team B is 3. That is, although the two

Figure 4.5: Receipt graph segment

nodes are connected directly via only one edge with weight equal to 1, the total amount of
service that A indirectly owes to B is 3. As it seems, service is treated as a transitive value
between teams.

When the decision function is applied to a pair of teams, the maximum flow between
them is computed in both directions. The criterion for deciding whether access should be
granted to a client is similar to that of the score-based function described in Section 4.2.4.2.
That is, access should be granted with probability equal to the ratio of the maximum flow
from the provider to the consumer team to the maximum flow in the opposite direction.
When there is no flow from the consumer to the provider, it is implied that the consumer
owes no service to the provider. In this case, if there is flow in the opposite direction
(implying that the provider owes some service to the consumer), service is granted. The

63

probability with which access is granted is calculated via the following formula:

X &�Y[Z�Z]\+E+E+*.H
^_a` (if pRYl?rqrs8t+uD&8m < X b�*.HVghUikj � (�L pRY2?rqvs�twux& X b < mO*pRY2?rqvs�twux&�m < X b�* � otherwise

(4.2)

The notation in the above formula is the same as in formula 4.1. pRY2?rqvs�twuD&�m < X b�*
represents the maximum flow from the consumer to the provider team.

In case no flow exists in either direction, instead of unconditinally providing access, as
Formula 4.2 implies, there are various criteria that can be used by the function to output
a decision. The decision then may be random. A more accurate result, though, may be
produced if access is granted with probability equal to the ratio of the sum of weights of the
consumer’s incoming edges to that of the provider’s incoming edges. Recall that the more
the incoming receipts of a graph vertex, the more the amount of service other teams owe

to the team represented by that node. Intuitively, when no flow exists between two nodes,
this ratio is an estimate of the ratio of the utility of the two teams for the community.

As to the implementation of this function, first the two teams involved in the decision
are looked up and retrieved from the hash table storing teams. The PWNC TEAM pointers
retrieved have a graph node field, which points to the respective nodes in the receipt
graph (for more information on the receipt graph data structure, see 4.2.3.4). The graph
nodes are in fact AL HEAD pointers, which are passed as arguments to the maximum flow
function. Its prototype is as follows:

long maxflow run(AL HEAD *source, AL HEAD *sink)

maxflow run returns the maximum flow from source to sink. It is run for both
directions, that is from the provider to the consumer and vice versa. The rdb judge

function will return 1 (access should be granted) according to the probability calculated
using formula 4.2.

4.3 Access Point Agent

4.3.1 Architecture

The behavior of a generic access point software agent was specified in Section 3.4.2.2 and
3.4.3.2, for the centralized and the decentralized cases respectively. The access point uses

64

is a multithreaded TCP server to listen for client messages and to communicate with the
receipt repository residing in a TCA or in a team server. The access point is responsible
for maintaining per-session state, where information such as session timestamps, timers
and traffic measurements are kept. Furthermore, it is responsible for blocking access to
unauthorized clients and accurately measuring client session traffic. Figure 4.6 shows the
modules that comprise the P2PWNC access point software agent.

Figure 4.6: Access point agent modules

The access point software is desinged to run in various platforms, but is intented for
use on top of embedded linux-based wireless access points. Performance measurements
presented in Section 5 show that it is feasible to provide the functionality of the P2PWNC
protocol efficiently over such constrained devices.

4.3.2 Client Session Handling

The number of client sessions that can run simultaneously is limited. For each session
there is a client thread which handles session state and communication with the client. As
described in Section 4.1.3, there is a thread pool from which an available thread is picked
for a new session (via a start new thread call), as soon as the server has accepted a
new TCP connection from a client.

The state maintained for each session includes the following:

Client IP address The IP address of a client is permanent during a session. Also, since
IP addresses are assigned to clients by a DHCP server, they are also unique. To

65

avoid duplicate sessions, there is a hash table where client information are stored.
In this structure, clients are keyed by their IP address. A new record is added to the
hash table as soon as a session has been eshtablished, that is after the client has been
admitted to the system.

Client certificate The certificate of the client is extracted by the CONN message at the
beginning of a session and is verified. If verification fails, the session is cancelled
and resources are released.

Last receipt The most recent receipt that a client has sent during a session is kept by the
access point, since there is no need to store older receipts. After all, only one receipt
per session is considered valid, and that is the last one. The access point periodically
receives fresh receipts in reply to RREQ messages.

Session timestamp The session timestamp indicates the moment when the client is granted
access to the system. It is unique for a session and it is contained in all subsequent
receipts. Its format has been specified in Chapter 3.

Forwarded traffic The volume of data a client has uploaded and downloaded during a
session is being recorded by the traffic measuring module. Traffic measuring begins
as soon as the client is admitted to the network.

Index of client thread As described in Section 4.1.3, the thread pool is represented by an
array of threads of fixed length. This state information refers to the index of the client
thread in question in the pool array.

Timers There are various timers that control the access point behavior during a session.
These timers are implementation dependent and are not specified by the protocol.
Examining session timers in the order that they appear in the lifecycle of a session,
the first one of them is activated as soon as the new thread has been started, while
waiting for the CONN message from a client (almost the same applies in the decen-
tralized case, where a number of RCPT messages precede the CONN message). A
timeout may also occur while waiting for a connection to the receipt repository server
and when expecting the outcome of the decision function. Another timer needs to be
employed each time a receipt is expected.

As specified by the protocol, sessions are client initiated. In the decentralized case,
optionally, the client may begin the session by sending RCPT messages. The receipts are

66

thus received, parsed, verified and send to the receipt repository. Afterwards, the session
handling thread receivs a CONN message, which contains the client certificate. After the
certificate is verified, the access point initiates a TCP connection to the receipt repository.
This may either be a trusted central authority or a team server. The receipt repository runs
the decision function and sends the access point a QRSP message.

It should be noted that in the decentralized case, the team server may be collocated with
the access point. For example, they may both reside in the access point’s firmware. As of
today, they are two separate modules, which communicate over TCP even in the case of
running on the same host.

If the outcome of the decision function is negative for the client, the session must be
stopped. Thus, the client information are removed from the hash table, state resources must
be freed and the thread must exit and be returned to the thread pool.

Otherwise, the client should be admitted to the network. For this purpose, the ses-
sion handling module needs to interoperate with the access control and the traffic measure-
ment modules (their functionality will be described in Section 4.3.4 and 4.3.5 respectively).
Since the access control module is a separate process which communicates with the session
handling threads via a message queue, it is informed by the client thread that the IP address
of the client should no more be blocked. Also, the traffic measurements module should
from now on keep track of the traffic initiated by the specific client. Traffic logging will be
explained in detail in Section 4.3.4.

After the above steps, a session is refreshed by sending the client RREQ messages and
receiving receipts. A timer is used to control the intervals when receipts are requested.
Choosing these intervals is left to the application. Frequent receipt requests result in com-
munication and processing overhead in both the client and the access point side, since a
receipt needs to be signed by the client and verified by the access point. On the other hand,
an access point that sends RREQ rarely is susceptible to attacks. Namely, since the RREQ
is a request that the client acknowledges the service that she has enjoyed, she may refuse to
sign a receipt after consuming an important amount of server resources. The session will
be ended, but the client will have overconsumed service for free.

The value of the weight field of an RREQ is acquired by a query to the traffic logging
measurement module. As it seems, all the RREQ messages sent over a session are identical,
except for the value of the weight header, which is increasing.

The session is ended when either a receipt verification fails, a timeout occurs when
waiting for a receipt or the TCP connection is closed. The last receipt of the session (that

67

is the one with the largest weight value), if any, is send to the receipt repository. Finally,
the state resources are freed and the thread is returned to the thread pool.

4.3.3 Communication with the Receipt Repository

Communication with the receipt repository happens in two of the phases of a client session.
First, it occurs in the beginning of a session. In decentralized case the session may start
with the client supplying receipts to the access point. After sanity checks, these receipts
are sent to the receipt repository via RCPT messages. It should be noted that the receipt
repository in consideration is the access point’s team server. Then, a QUER message is
send to the repository so that a decision on whether to grant access to a client is taken.
This step is the same in both the decentralized and the centralized case. Then, the QRSP
message is received and parsed. If a timeout occurs while connecting to the repository or
while waiting for the QRSP message, the client session ends.

Second, in the end of the session, the session handling thread sends an RCPT message
to the repository, so that the session’s receipt is stored. As it seems, communication with
the receipt repository is stateless.

4.3.4 Traffic Measurements

For proper implementation of an access point software agent, a module that performs ac-
curate measurements of client traffic is vital. However, since agents are autonomous they
may skip this part, and thus this module is not protocol-specified.

In the P2PWNC protocol reference implementation, traffic measurements are performed
by a Linux kernel module. This module is based on the Netfilter framework [6], which is
standard in Linux 2.4 and 2.6 kernels. The choice of measuring traffic inside the kernel
rather than from userspace was mandated by the need to obtain accurate results. Thus, no
loss of accuracy is incurred during measuring traffic, at the expense of the time overhead
caused by the extra processing of each packet to extract traffic information, which might
slow down network performance. However, since this extra processing is minimal, network
speed degradation is negligible. What is more, using a userspace utility for packet captur-
ing, such as libpcap, would take up precious space in the firmware of the space-limited
embedded wireless access points that our system is targeted at.

The traffic logging module keeps traffic statistics in a character device file (/dev/tstats).
Statistics are kept for the IP addresses that are currently being used by client sessions. Each

68

session can uniquely be identified by the IP address of the client. Traffic information for
each session is kept in a struct of the following format:

struct stats {

unsigned int nClientIP;

unsigned int nTotalPacketsIn;

unsigned int nTotalPacketsOut;

unsigned int nTotalBytesIn;

unsigned int nTotalBytesOut;

};

The traffic information of all concurrent sessions are kept in an array which resides in
/dev/tstats. Its format is as follows:

struct client_list {

unsigned int nRecNum;

struct stats clist[MAX_CLIENTS];

};

As obvious, client list contains an array of stats structs called clist. nRecNum
is the number of elements in clist. The maximum number of sessions for which traffic
information can be kept is MAX CLIENTS, which can be set arbitrarily. In our reference
implementation, the value of MAX CLIENTS is 1024, which is more than enough.

When a new client session has been established, that is after sending the client a CACK
message, state concerning the client’s traffic volume is set. That is, a new element is
added in clist. Conversely, when a session has ended, this state must be removed. Pe-
riodically during the session the character device is polled by the session handling thread
to acquire the current traffic measurement for the particular session, so that an RREQ
message is constructed. The above three types of operations take place via ioctl calls
on /dev/tstats from the userspace application (client thread). Each time such an
ioctl takes place, the kernel module handles the request and, if necessary, copies data
to userspace. For example, when there is a request for traffic statistic for a specified client
(whose IP address is passed as an argument to ioctl), clist is traversed to locate the
address in question and the respective array element is copied to a userspace buffer (via the
copy to user call).

During the session, the trafic logging module intercepts every packet and checks its
source and destination IP addresses against the addresses of the client whose traffic is being

69

measured (that is the elements of clist). If the source or destination IP addresses match
with those of clients, the fields of the respective clist element are updated accordingly.

From the perspective of the userspace application, that is the access point’s multi-
threaded TCP server, in order for the system to work properly, the character device de-
scribed needs to be created as soon as the server starts up (if it does not already exist). This
is performed via the mknod system call. The following command sequence carries out this
task:

dev_t tstats_dev;

tstats_dev = makedev(241, 0);

mknod ("/dev/tstats", S_IFCHR | 0666, tstats_dev);

The above create a character device whose major number is 241 and its minor number is 0.
If the path specified already exists, the call will fail. Moreover, the proper ioctls need
to be performed regularly, as specified above.

4.3.5 Network Access Control

Since our implementation of the access point software is based on Linux 2.4/2.6 kernels,
access control is carried out using the iptables package. Iptables is a firewall system built
on top of the netfilter [6] framework. Apart from its advantages such as flexibility and effi-
ciency, iptables has a drawback; it lacks an official API. Therefore, in this implementation,
firewall operations such as blocking or granting access to clients are performed program-
matically via the system function.

A separate process (it will be referred to as cmd handler) is responsible for carrying
out these operations. This process communicates with the multithreaded server process via
a message queue. cmd handler should be started prior to the access point server. It is
responsible for creating the queue using the msgget System V IPC call. From then on, it
waits for messages from the access point server.

The access point server, in turn, when started up, has to get a handle of the message
queue (using msgget). All firewall commands are then sent to cmd handler via the
message queue. Messages have the following format:

typedef struct msgbuf {

long mtype;

char mtext[1];

} MSG_BUF;

70

The mtext field is in fact a string which needs to be allocated before making use of
the struct. For example, before receiving a message from the queue, space needs to be
allocated for the string and then the MSG BUF variable must be passed as an argument to
the msgrcv function.

Session threads of the access point server send the cmd handler process iptables
commands. Such a command occupies the mtext field of an MSG BUF struct. The com-
mand handling process receives messages from the queue and executes the specified com-
mands via the system function.

Firewall commands need to be executed when the server starts up, since access to the
network should be. Only the port where the server listens for client messages should be
left open. First, the access point starts by creating two new iptables chains which will be
responsible for the traffic of the P2PWNC clients. This is done as follows:

iptables -N PWNC_INPUT

iptables -N PWNC_FORWARD

After creating the new chains, it inserts the following rules which “redirect” the IN-
PUT and FORWARD chains to the new chains created. In the examples that follow we
suppose that the local subnet in which clients are assigned addresses is 192.168.1.1, with a
255.255.255.0 subnet mask.

iptables -I INPUT 1 -s 192.168.1.0/24 -j PWNC_INPUT

iptables -I FORWARD 1 -s 192.168.1.0/24 -j PWNC_FORWARD

Then, all incoming traffic is blocked but for messages to the server standard TCP port
(9999). This is achieved by appending the following rules to the firewall rule set:

iptables -A PWNC_INPUT -s 192.168.1.0/24 --protocol tcp

--destination-port 9999 -j ACCEPT

iptables -A PWNC_INPUT -s 192.168.1.0/24 -j REJECT

iptables -A PWNC_FORWARD -s 192.168.1.0/24 -j REJECT

From this point on, when a new client is admitted to the network, rules of the following
form will be placed on top of the rule set:

iptables -I PWNC_INPUT 1 -s 192.168.1.100 -j ACCEPT

iptables -I PWNC_FORWARD 1 -s 192.168.1.100 -j ACCEPT

71

The above rules provide full access to the client with the IP address 192.168.1.100. Note
that these rules are appended on top of the existing rules, since when a new packet arrives,
rules are applied to it in the order that they appear in the set. Thus, if the first rule is
applicable, all others are ignored. The rules that block access still exist, but they are never
applied since the above rules are used first.

When a session is ended, the session handling thread sends cmd handler the ap-
propriate commands so that the above rules disappear and the IP address of the specified
client is again blocked. Such commands are shown below (the -D option is used for rule
removal):

iptables -D PWNC_INPUT -s 192.168.1.100 -j ACCEPT

iptables -D PWNC_FORWARD -s 192.168.1.100 -j ACCEPT

At this point, is should be noted that if one needs other applications such as an SSH dae-
mon to operate properly, the appropriate iptables commands that permit traffic concerning
these applications should be issued.

4.4 Mobile User Agent

The mobile user software agent is somewhat simpler that that of the access point. As of
this document, there are working implementations in C and Java (albeit not with the same
capabilities).

4.4.1 Operation in the Centralized Case

In the centralized case, client software need only implement the basic functions of initiat-
ing a session with an access point, receiving and parsing periodical RREQ messages and
signing receipts in reply to these messages. No receipt storage functionality is required.

A subtlety in implementing mobile user agent software is now discussed. It has been
explained that a client is periodically requested to sign a receipt and send it to the access
point. The RREQ message issuing this request includes the measurement of the traffic that
the access point has forwarded on behalf of the client. Since the receipt is the access point’s
“payment” of the service that has been provided, the higher the receipt weight the more the
cost of the service for the client.

If the client does not measure the traffic that she has initiated, then she is susceptible
to service overcharging by the access points. That is, an access point may place a weight

72

value much greater that the real traffic volume of the mobile user. If the mobile user signs
a receipt with that weight value, she admits that she has used much more service that the
actual amount.

Therefore, is is good for the client to have this functionality implemented. In our C
Linux implementation, traffic measuring capability is implemented in a similar way as in
the traffic measurements module of the access point software (see 4.3.4), that is inside
the Linux kernel. Our Java version of the client does not have such capabilities as of this
writing.

4.4.2 Operation in the Decentralized Case

In the decentralized mode, a client may carry receipts so that they will be presented to the
access point at the beginning of the session, to have more chances of being admitted to the
visited network.

For this, the client needs to have a receipt repository module built in its software. This
repository need not be as sophisticated as that of the team server’s or the TCA’s. This
repository is filled via UPDT messages sent to the repository server of the team the client
belongs to.

Since the client need not run the decision algorithm, its repository does not support for
receipt graph operations. Thus, its structure is simpler, as there is no graph representation of
data. Apart from that, receipts are stored in the same way as in the repository described in
4.2. That is, receipts are pointed to by the leafs of a red-black tree (see 4.2.3.2). Permanent
storage take place as described in 4.2.3.3.

In the case of updating the receipt repository, the client first locates the most recent
receipt of its database and sends its team server an UPDT message containing the most
recent receipt’s timestamp. Then, receives a set of recent receipts and inserts them in the
red-black tree and stores them permanently.

In the case of sending the visited access points receipts in the beginning of the ses-
sion, the client performs a range query on the tree. During the query, each accessed node
(receipt) is sent to the access point.

Apart from the above, the other operations of the client in the decentralized case are the
same as in the centralized.

73

4.5 Trusted Central Authority

The TCA module, as has been explained, is needed in the centralized case of the P2PWNC
scheme. It acts as a central receipt repository, answers queries about granting access using
a decision function and generates key pairs for the P2PWNC teams.

The TCA is equipped with a receipt repository module as described in Section 4.2.
Also, it keeps track of the teams that it has generated. That is, the public keys of the
teams that the TCA has created are kept and used for checking a receipt’s validity. When
a new receipt is encountered, the two peers that are involved in it are looked up in a teams
database. In case a team is not found, it means that its public key is invalid (not generated
by the TCA).

The implementation of the TCA presented here is written in C and it is Linux based.
However, other implementations (such as a Java-based one) can easily be developed.

The basic module is a multithreaded TCP server. This server is stateless. It accepts
TCP connections and answers to QUER and RCPT messages. When receiving a QUER
message, it executes the decision function and returns its outcome to the issuing access
point via a QRSP message. When receiving an RCPT message, it passes it to the receipt
repository module, which performs the necessary checks and eventually stores it.

The TCA module need not know the details of the operation of the receipt repository
module. They communicate via a simple API, which gives receipt insertion and decision
function facilities. These operations are carried out transparently to the TCA server.

As far as team generation utilities are concerned, a separate process is responsible for
notifying the TCA server that a new team has been generated. New key pairs are being
issued by another application (a command line utility). When such a pair has been con-
structed, a process that communicates with the TCA via a message queue sends the server
module a message containing the public key of the new team. The TCA server reads mes-
sages from this message queue and inserts (or removes) the specified public keys from its
team database. This way, the TCA server need not be restarted every time new teams are
generated.

The team database is in fact a repository of team public keys. On server startup, these
keys are loaded in a hash table for fast lookup. When the TCA receives a message from the
queue it updates this hash table accordingly. The architecture of the TCA software modules
is shown in Figure 4.7.

74

Figure 4.7: TCA software architecture

4.6 Team Server

The team server operates in a similar fashion as the TCA. However, unlike the TCA, it is
not globally trusted. It acts like a trusted central receipt repository only for the access points
and members of one team. It uses the same underlying receipt repository module as the
TCA, with some minor differences. The main difference is that it does not maintain a team
database, since in the decentralized case, team key pairs are self-generated. Receipt storage
and decision function operation is identical to that of the TCA and is equally transparent to
the team server.

The team server module is a multithreaded stateless TCP server. It accepts TCP con-
nections by team members and access points and starts a new thread for each connection.
It receives QUER and RCPT messages in the same way as the TCA does. Also, it can reply
to UPDT messages from a team’s mobile users.

Each time an UPDT message is received, the team server performs a range query on the
receipt repository, using the rdb range query receipt repository API call. Each receipt
in the specified range (that is, with timestamp greater or equal to the one specified) is sent
to the requesting client via an RCPT message.

The team server software is also written in C and runs in Linux. It can also be ported
easily to the Java platform. However, since the team server may be collocated with an

75

access point, the Linux version can be included in an access pointss firmware, unlike a
Java version (as it would require that the Java VM is included in the firmware, too). In the
case when the team server runs on top of an access point, communication with the access
point module does not change. They still communicate via TCP, although they are located
at the same host.

76

5 Performance Evaluation

5.1 System Testbed

The systems on which the tests were carried out were an AMD AthlonXP 2800 laptop and
a Linksys WRT54GS 802.11g wireless router. The AthlonXP machine has 512Mb of RAM
and it has a 2.08GHz CPU. Its operating system is RedHat Linux 8.0 with a 2.4.18 kernel.

The Linksys router has a 200MHz MIPS CPU, 32Mb RAM and 8Mb of flash memory.
In this work, the firmware of the device has been modifiad so that the P2PWNC software
is included, as well as some other auxiliary applications such as the Dropbear [2] SSH
daemon. It runs embedded Linux with a 2.4.20 kernel and it comes with an out-of-the-box
read-only compressed file system (cramfs) residing on the router’s flash memory. However,
there are 32Kb of non-volatile RAM (nvram) on the flash card, which are writable and are
organized in variable-value pairs. This memory area is mainly used for permanent storage
of configuration settings, since, obviously, data that reside in the system’s main memory are
erased when the device is powered off. Nvram can be accessed via the nvram command
line utility or, programmatically, via the nvram API which is included with the firmware’s
Linux source distribution.

No attempt has been made to change the router’s file system to a writable one, although
there are such approaches. OpenWRT [8], for instance, is a Linux distribution targeted
at the Linksys WRT54G/GS routers and one of its characteristics is the JFFS2 [28] file
system, which is both compressed and writable. The P2PWNC software modules have
been included in the firmware image, while test programs, scripts and data are put in the
router’s RAM (which is mapped to the /tmp directory). Measurement data are generated
and sent to another host via the router’s network interfaces.

The cryptography library used was OpenSSL 0.9.8 (beta5). OpenSSL [7] is an open
source toolkit and it is one of the most widely used cryptography libraries. It is written
in C and assembly, which is however machine depended. Assembly code for speeding up

77

some operations is provided mainly for the x86 platforms (such as Intel or AMD Athlon).
The 0.9.8 version was used, though in its beta version, due to its support for elliptic curve
cryptography. The stable release of the 0.9.8 is expected by July 2005.

The programs developed for the tests, as well as the OpenSSL library, were built using
the gcc version 3.2 compiler. For the MIPS platform, cross-compilation on an x86 machine
was carried out. Level 3 code optimization was used (-O3 gcc flag) on both platforms. For
the MIPS CPU, the -mcpu=r4600 and -mips2 flags were also added.

The exact specifications of the two platforms are summarized in Table 5.1.

Table 5.1: Platform specifications

Athlon XP Linksys
System type AMD AthlonXP Broadcom MIPSel
CPU speed 2.08GHz 200MHz
RAM 512Mb 32Mb
Permanent storage 60Gb hard disk 8Mb flash (read only)

32Kb NVRAM
Operating System RedHat Linux 8.0, Linux 2.4.20 (Broadcom)

2.4.18 kernel
OpenSSL version 0.9.8 beta 5 0.9.8 beta 5
Compiler gcc v3.2 gcc v3.2 (cross compilation)
GCC optimizations -O3 -O3 -mcpu=r4600 -mips2

5.2 Performance Metrics

5.2.1 Time Measurements

In the tests that are presented in this section, time measurements have been performed
via the times function, which is defined in the <sys/times.h> header file and its
prototype is as follows:

clock t times(struct tms *buf);

On Linux systems, it returns the number of clock ticks that have elapsed since the system
was booted. Its return value is not being used in the measurements presented here. Rather,
the information contained in the buf argument after the execution of the function are used.
This argument a struct tms pointer. This struct is presented below:

78

struct tms {

clock_t tms_utime; /* user time */

clock_t tms_stime; /* system time */

clock_t tms_cutime; /* user time of children */

clock_t tms_cstime; /* system time of children */

};

tms utime represents the time spent by the CPU executing instructions of the calling
process (while the process was running in user mode). System time is the CPU time spent
by the system while executing tasks on behalf of the process (that is, while the process was
executed in kernel mode, for example, performing I/O operations). The other two fields
refer to user and system time (as explained above) spent by children of the process.

When referring to time, tms utime will be implied. Using tms utime on its own
and omitting system time is more accurate for the sake of comparisons, since it involves
only instructions of the application code. On the other hand, calculating wall time (via, for
instance, the gettimeofday call) would give a more realistic view of an applications
performance, but it depends heavily on the system’s load and thus is not appropriate for
our measurements. Using the times function is also compatible with the speed utility,
which is provided with the OpenSSL package. The speed program, as its name implies,
measures the speed of cryptographic operations, as implemented in the OpenSSL package.
When supported by the system, it uses the times function for speed measurements.

It should be noticed that the granularity of the times function is not fine. Its resolution
is defined by the frequency of clock ticks. In the platforms that these tests were run,
the frequency of clock ticks was 100ticks/sec. Thus, the lowest time interval that can be
accurately measured by the times function is 10msec. The clock ticks frequency can be
acquired via the following call:

long ticks = sysconf(SC CLK TCK);

gettimeofday provides for microsecond time resolution, but, as mentioned above, it
does not measure time per process and it may report false measurements depending on the
system’s current load.

To overcome the low resolution of the times function, consecutive runs of the same
experiments are performed. The total time needed for these consecutive executions is mea-
sured and averaged over the number of these runs.

79

5.2.2 Space Measurements

Measurements concerning memory usage by P2PWNC software modules are expressed by
the resident set size (rss) of processes. The rss of a process is the number of pages it has in
real memory. It includes the process’ text (program code), data and stack space.

Memory usage measurements report the maximum rss value during the lifetime of the
process in kilobytes. For example, when running the maximum flow algorithm, the rss will
vary during its execution, since memory will be dynamically allocated and freed. In the
measurements presented in this document, the maximum of these rss values is of interest.
Information about the rss of a process can be accessed via the /proc file system.

To have an accurate view of the memory usage of a process which makes a frequent and
unpredictable use of dynamic memory, its rss needs to be constantly monitored. Since only
the greatest rss value in the lifetime of a process is of interest, it is adequate to measure
memory usage in the event of the allocation of a new data segment via the malloc call
(freeing memory obviously cannot result in an rss increase).

For this purpose, the malloc has been overridden so that it can monitor memory
usage when appropriate and update the maximum rss value for the process. Whenever
needed, the /proc file system entry of the process is polled so that the resident set size
is determined. In Linux systems, for each process, there is the respective directory under
/proc. For instance, for a process whose pid is 2345 there is a /proc/2345 directory
where various information is stored. In our case, the required information can be found in
the /proc/2345/stat or /proc/2345/statm files. An example of the contents of
the statm file is shown below:

1898 1898 81 87 0 1811 1817

The second value is the rss of the process measured in pages. To obtain its value in kilo-
bytes, it needs to be multiplied by the page size in the system where the process runs. In
both platforms where the P2PWNC software is being tested, the page size is 4096 bytes.
This value can be obtained via the getpagesize system call. The rss value in kilobytes
may also be accessed via the /proc/2345/stat file.

It should be noted that this approach is recommended only for testing purposes. Polling
the proc file system on every malloc call is very time consuming. Alternatively, in some
systems, the maximum rss of a process can be obtained via the getrusage call. However,
this information is not available under Linux.

80

5.3 Cryptographic Operations

5.3.1 Parameters

Since in the P2PWNC software not all of the OpenSSL library’s functionality is employed,
only the features the performance of whom is of interest to the system are tested. In partic-
ular, the efficiency in key generation, digital signing and signature verification is measured.

In the tests that will be described in this section, the performance of elliptic curve cryp-
tography compared to the RSA cryptosystem is studied. Experiments were carried out on
the two platforms specified in Section 5.1 using the time metrics described in Section 5.2.
In particular, to overcome the granularity problems of the times function, each test was
carried out for at least 10 seconds or at least 10 consecutive times. For example, the same
signature was being generated for a period of ten seconds. The user time spent for this pro-
cedure, as well as the number of signature operations were measured. After the 10 seconds
had elapsed, the total user time spent was divided by the number of operations performed,
to acquire the average signature time. In the case of an operation that takes more that 10
seconds to be executed (for instance, generation of a 3072-bit RSA key), 10 consecutive
iterations were carried out and the time spent per operation was being computed as above.

As to the elliptic curve parameters, randomly verifiable curves over the finite field "y#
were used. For their exact domain parameters and their semantics one can refer to [21].
The RSA cryptosystem parameters are the length of the key and the size of the public
exponent, which is fixed to 65537.

The operations that are benchmarked are key generation, digital signing and signature
verification. In all the experiments that were carried out, the OpenSSL pseudo-random
generator was seeded with the same 2048-byte seed. It should be pointed out that the digital
signature and verification times include the time needed to generate the SHA-1 hash of the
signed data, as producing the message digest of the data that are to be signed is part of
the specification of the signing and verification operations. Since, in practice, a P2PWNC
agent may normally be requested to sign or verify a receipt, the length of the data that were
input to the SHA-1 hash function was the sum of the lengths of a member certificate, a
public key and two 4-byte integers (receipt timestamp an weight). For example, in the case
of the tests of the performance of 192-bit ECDSA signature operations, the length of the
input data is z|{~}l�

5
}l�

5�,
{~}

H�,�g
z

bytes

81

(since, according to the P2PWNC representation of cryptographic data, such a public key
needs 49 bytes to be represented, while an ECDSA signature requires 48 bytes).

5.3.2 Measurements

The results of the tests are shown in Table 5.2. The first column indicates the bit length
of the keys involved in each operation. Each row refers to experiments using keys of
equivalent security levels for RSA end ECC. The list of comparable key sizes between
RSA end ECC cryptosystems can be found in [20]. The first numbers in the “Bit length”
column refer to RSA key sizes while the second numbers refer to ECC key sizes. For
example, 160-bit ECC and 1024-bit RSA keys provide similar security.

Table 5.2 is divided in three sections, one for each of the operations that is bench-
marked. For each operation, the results for the two platforms are under the “Athlon XP”
and “Linksys” columns. For each platform, there are two sub-columns showing the average
time spent on an operation using RSA and ECC cryptography respectively (for the same
security level). Execution times are expressed in seconds.

The first noticeable advantage of ECC over RSA cryptography is the fact that it offers
the same security levels with much smaller keys. The space efficiency of ECC becomes
more apparent as the security level increases. What is more, since the bit length of RSA
keys grows faster as more security is required, the time needed to perform cryptographic
operations increases in a similar pace. Table 5.3 shows the key size ratio of ECC and RSA
cryptography for the same security levels.

In 5.4, the performance ratio of RSA over ECC operations is shown. The ratios shown
are derived from Table 5.2. Higher values imply a slower operation. Obviously, apart from
the case of verifications, the speed advantage of ECC over RSA increases even faster than
its space advantage.

The main drawback of using ECC for the needs of the P2PWNC protocol is its higher
verification times. Given that such operations will often be taking place in the access
point agent, which will most probably be running in top of an embedded device, the access
point’s operation may be slown down in the presence of a large number of clients. However,
even under such circumstances, the verification of a P2PWNC receipt takes time in the
order of 0.1 seconds for 160, 192 and 224-bit curves on the Linksys platform (200MHz
processor). This value is acceptable for most cases. Problems may occur in the distributed
design of the P2PWNC scheme, where a client may start a session offering receipts to
the visited access point. In this case, workarounds to overcome the verification load may

82

Table 5.2: Cryptographic operation performance

Key Generation
Athlon XP Linksys

Bit length RSA ECC RSA ECC
1024/160 0.3738 0.0051 8.8064 0.0924
1536/192 1.4827 0.0046 22.0127 0.0827
2048/224 3.4945 0.0056 49.9800 0.1105
3072/256 11.2082 0.0067 277.7727 0.3646

Signature
Athlon XP Linksys

Bit length RSA ECC RSA ECC
1024/160 0.0090 0.0013 0.3006 0.0203
1536/192 0.0259 0.0012 0.6556 0.0185
2048/224 0.0473 0.0014 1.5290 0.0234
3072/256 0.1491 0.0017 3.9390 0.0731

Verification
Athlon XP Linksys

Bit length RSA ECC RSA ECC
1024/160 0.0004 0.0065 0.0123 0.1147
1536/192 0.0008 0.0060 0.0214 0.0999
2048/224 0.0013 0.0071 0.0379 0.1357
3072/256 0.0028 0.0086 0.0753 0.4530

Table 5.3: Key size ratio

Ratio
Security level (RSA/ECC)

1024/160 6.4 : 1
1536/192 8 : 1
2048/224 9.14 : 1
3072/256 12 : 1

83

include performing offline receipt verification or by limiting the number of the accepted
receipts according to the current system load.

Table 5.4: Cryptographic operations running time ratios

Key Generation
Bit length Athlon XP Linksys
1024/160 74.12 : 1 95.31 : 1
1536/192 322.33 : 1 266.23 : 1
2048/224 624.02 : 1 452.31 : 1
3072/256 1672.87 : 1 761.86 : 1

Signature
Bit length Athlon XP Linksys
1024/160 6.92 : 1 14.81 : 1
1536/192 21.58 : 1 35.44 : 1
2048/224 33.79 : 1 65.34 : 1
3072/256 87.71 : 1 53.89 : 1

Verification
Bit length Athlon XP Linksys
1024/160 1 : 16.25 1 : 9.33
1536/192 1 : 7.50 1 : 4.67
2048/224 1 : 5.46 1 : 3.58
3072/256 1 : 3.07 1 : 6.02

As one may observe, although the CPU of the Linksys router is 10 times slower than
that of the AthlonXP machine, operations were more than 10 times slower on the wireless
access point, contrary to what one might expect. Possible reasons for that mismatch include
the different processor architectures and, above all, the fact that some routines for opera-
tions on big integers have been implemented in assembler only for the x86 platform. The
respective assembler routines are not available for the MIPS architecture in the OpenSSL
package, and this may explain the slower than expected operations. Hence, it occurs that
further optimizations are possible for the MIPS platform.

Evaluating the results of the experiments on the performance of cryptography opera-
tions in terms of the P2PWNC protocol, it seems that very long keys are inappropriate due
to their space overhead and the slow and resource consuming operations that they incur.
One should always bear in mind that the P2PWNC scheme and protocol were designed
with resource-constrained embedded devices in mind. Such devices may be PDAs or em-
bedded wireless access points, with capabilities and performance similar to those of the

84

Linksys WRT54GS router. On the one hand, the roamer who may carry a PDA is inter-
ested in digital signature speed, while the access point cares more about fast verification
times. From Tables 5.2 and 5.4, it is confirmed that public key operations (e.g. signature
verifications) are faster when RSA is employed, while for private key operations (such as
digital signing), ECC seems more appropriate.

Considering that portable devices such as PDAs are battery-powered, while access
points typically operate on AC power, the applicability of ECC is more obvious. Power
consumption is of more concern on the client side (PDA). Therefore, since the client bears
the weight of producing digital signatures, it is more crucial that signing is performed with
as little processing overhead as possible, so that more battery power is conserved. As ob-
vious from Table 5.4, RSA signing requires much more processing than ECC and is thus
less appropriate for battery-powered devices. Using ECC trades verification for signing
efficiency. Thus, choosing ECC burdens the access points with more verification overhead.
However, since access points typically do not have battery limitations, the computational
overhead incurred by ECC as to signature verifications is of minor importance.

Key generation, where ECC also has a clear advantage, is not discussed, since such
operations are performed rarely in the P2PWNC scheme.

Summing up the results of the cryptographic operations experiments, it seems that the
most appropriate solution of cryptosystem parameters is using the 192-bit randomly verifi-
able elliptic curve. As can be seen in [21], this curve is recommended by the X9.62, X9.63
and NIST standards, while being compliant to other standards, too. This choice offers bet-
ter security than 160-bit curves, while requiring the same (or even less) verification and
signature times. Also, compared to the equivalent RSA 1536-bit keys, it offers the same
security with 8 times smaller keys.

5.4 Maximum Flow Algorithm Performance

As stated in Section 4.2.4.3, the decision on whether a consumer (mobile user) will be
granted access or not may be based on the execution of a maximum flow algorithm on the
graph formed by the receipts and the peers of the P2PWNC. In this section, the performance
of our implementation of the maximum flow algorithm, as presented in Section 4.2.3.5 is
evaluated.

Two types of experiments have been performed. First, the speed of our maximum flow
algorithm is measured, when run on repositories of various sizes. Second, the memory

85

usage of the above experiments is measured. The metrics used have been described in
Section 5.2.

In these experiments, the time spent and the maximum amount memory consumed
during the execution of the algorithm on receipt sets of increasing size and for various
peer populations have been measured. Each peer corresponds to a graph vertex, while a
graph edge represents a consumer - provider pair (an edge is directed from a consumer to a
provider). It should be mentioned that one edge may correspond to more that one receipts.

In each of the graphs presented in this section, three curves have been plotted, referring
to populations of 100, 500 and 1000 peers respectively. The ? -coordinate of a data point
indicates the size of the receipt repository on which the algorithm was run. Values on the? -axis start from 100, followed by 1000 receipts and going up to 10000 receipts with a step
of 1000 receipts (that is, 100, 1000, 2000, etc. receipts).

It should be noted that the code of the test programs was identical to that of the
P2PWNC reference implementation, with the addition of time and memory usage mea-
suring functionality. The program through which the maximum flow algorithm was run
included the P2PWNC receipt repository module, as well as the core protocol, cryptog-
raphy and threads modules. However, in the presented experiments there was no use of
multithreading. The inclusion of all these modules, though unnecessary for measuring the
algorithm’s running time, is of importance when it comes to measuring memory utilization.

5.4.1 Running Time Evaluation

5.4.1.1 Parameters

For the evaluation of the running time of our maximum flow implementation, the times
function was used, as described in Section 5.2. Since the input to the maximum flow
algorithm is a receipt graph and two graph nodes, for each point in the curve, 20 random
couples of nodes were chosen. The algorithm was executed for each of these couples on
the same graph for at least 3 seconds or 10 iterations and the total time needed for these
runs was averaged over the number of iterations. This approach was followed in order to
obtain more accurate time measurements, since the resolution of the times function on
the platforms where the experiments were run was 10msec. As explained in Section 5.2,
the resolution of the times function was 10ms, and the running time of the algorithm was
usually less than that.

The 20 time values obtained by the above procedure were averaged, and, thus, a point

86

in the curve was output. The rationale behind this method was to test the average running
time of the maximum flow algorithm implementation for various random instances on the
same graph. The algorithm was run with identical input on both the AMD Athlon XP and
the Linksys WRT54GS platforms.

5.4.1.2 Measurements

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
[s

ec
]

Repository size [receipts]

Maximum flow algorithm performance
on an AthlonXP 2800

100 teams
500 teams

1000 teams

Figure 5.1: Maximum flow running time on an AMD AthlonXP 2800

The results of the tests on the maximum flow algorithm running time are show in Fig-
ures 5.1 and 5.2. Figure 5.1 shows the running time of the maximum flow algorithm when
run on the AMD AthonXP platform, while the outcome of the same experiment run on the
Linksys platform is plotted in Figure 5.2. In both cases the plotted curves follow the same
trend. The running time of the algorithm increases proportionally to the size of the receipt
repository, when the number of peers (graph nodes) is fixed. As stated in Section 4.2.3.5,
the theoretical worst case running time of the FIFO variant of the generic push-relabel
maximum flow algorithm is %9&�KnSN* , where K is the number of graph nodes. However, for
practical use, this has proved inefficient. In the experiments that are shown, the global

87

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
[s

ec
]

Repository size [receipts]

Maximum flow algorithm performance
on a Linksys WRT54GS router

100 teams
500 teams

1000 teams

Figure 5.2: Maximum flow running time on Linksys WRT54GS

relabeling heuristic has been implemented (see Section 4.2.3.5) and, due to it, the running
time of the algorithm has been drastically improved.

The average time spent on the execution of the algorithm on sets of 10000 receipts
and 1000 peers is in the order of a few milliseconds on the AMD AthlonXP platform. On
the other hand, the Linksys WRT54GS wireless router is roughly 10 times slower in the
execution of the algorithm. For the same data set, it takes around 130 milliseconds on
average to run the maximum flow algorithm on the MIPS platform. This is what one might
expect, considering that the router’s processor is an order of magnitude slower that that of
the Athlon XP.

We believe that these time values are acceptable in terms of the P2PWNC scheme. In
the case of centralized repositories, more powerful computers are expected to be used (than
the Athlon XP). These time bounds are expected to be further improved using additional
maximum flow algorithm heuristics, such as the gap heuristic [14].

88

5.4.2 Memory Utilization Evaluation

5.4.2.1 Parameters

In the case of memory usage experiments, the ? -axis, in a similar manner to the the case
of time measurements, includes 100 values of receipt repository sizes, from 100 to 10000
receipts with a step of 100 receipts. The � -axis represents maximum memory usage by the
process in which the maximum flow algorithm is run. For each curve point, the maximum
flow algorithm was executed for 20 random pairs. The pairs used to yield the respective
data points for the time measurement curves described in the previous section are included.
Since time accuracy is of no importance in memory usage experiments, for each pair, only
one execution of the algorithm was carried out. During each execution, the memory used
by the process was constantly being monitored (see Section 5.2). The curve point’s � value
represents the maximum of the memory usage measurements in the above 20 runs.

Values of the � -axis are measured in kilobytes and represent a process’ maximum res-
ident set size (rss). The meaning of the rss metric was explained in Section 5.2. Memory
usage was measured only on the Linksys platform, since it is more resource-constrained
and thus memory utilization is of greater concern. Also, since the source code of the ex-
periments was identical, regardless of the platform for which it was compiled, the results
of these measurements would be the same for both the Linksys box and the AMD Athlon
computer.

The repositories used in these experiments were composed of receipts including 160-
bit ECC keys and signatures. Thus, the actual data size of each of these receipts totalled to
211 bytes. The internal representation of such a receipt (see Section 4.1.1.1.3) incurs some
extra overhead due to the additional fields of the data structures used. Thus, each 160-bit
ECC public key or signature takes up the following memory space:

� 2 bytes for the algorithm field

� 2 bytes for the bits field

� 4 bytes for the datalen filed, which indicates the length of the actual key data

� 41 bytes of the actual key data (data pointer)

The above fields total to 49 bytes. The same apply to the representation of an ECDSA
digital signature, with the difference that the actual signature data are 40 bytes. Thus, the

89

total length of the representation of such a signature is 48 bytes. A PWNC RCPT structure
containing only 160-bit ECC keys and signatures, takes up the following memory space:

� 49 bytes for the member certificate’s team public key

� 49 bytes for the member certificate’s user public key

� 48 bytes for the member certificate’s signature

� 49 bytes for the service provider’s public key

� 48 bytes for the receipt signature

� 4 bytes for the receipt timestamp

� 4 bytes for the receipt weight

Therefore, the total size of such a receipt is 251 bytes in its internal P2PWNC software
representation. Thus, a repository of 10000 receipts (of 160-bit ECC keys end signatures)
needs at least 2.51 megabytes for the representation of the receipts in main memory. This
amount does not include the memory spent on representing the receipt graph, the red-black
tree and the hash tables storing pointers to the receipts and teams of the repository.

5.4.2.2 Measurements

As to the memory usage measurements, it appears that memory consumption by the maxi-
mum flow algorithm grows only moderately as the number of peers increases. The amount
of used memory is dominated by the volume of the receipt repository and the overhead for
its graph and tree representation. Thus, memory usage increases proportionally to the vol-
ume of the data loaded (receipts). The memory space occupied by receipts was described
in Section 5.4.2.1.

From the graph displayed in Figure 5.3 it appears that the maximum amount of memory
used in the experiments never excceeded 6.012 megabytes. One should bear in mind that
this value represents the maximum resident set size of the process running the maximum
flow algorithm, which includes program instructions, data and stack usage. As described
in Section 5.1, the Linksys WRT54GS wireless router, on which memory tests were run,
has 32 megabytes of RAM. The stock Linksys firware with the addition of an SSH daemon
(and without running any of the P2PWNC software on it) has roughly 22 megabytes of

90

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ax

im
um

 R
S

S
 [K

b]

Repository size [receipts]

Maximum flow algorithm memory utilization
on a Linksys WRT54GS router

100 teams
500 teams

1000 teams

Figure 5.3: Maxflow memory usage on Linksys WRT54GS

free RAM as soon as it starts up. Thus, there is enough free memory to run the P2PWNC
software, even in the case of a large receipt repository.

It should be noted that the tests presented here do not make any use of multithreading.
The programs that have been run test only the performance of the receipt repository mod-
ule. However, even in the presence of a multithreaded application, memory overhead while
running the maximum flow algorithm will be similar to that presented in this section, since
the maximum flow algorithm is run by a single thread at a time and the receipt repository
is locked by the calling thread.

91

6 Future Work and Extensions

Although the design and implementation of the P2PWNC scheme, as of this writing, has
advanced and there is a working implementation of the scheme in client and access point
systems as well as in hosts acting as receipt repositories, there are still open issues con-
cerning various system aspects.

6.1 Security Considerations

There are certain types of attacks that the system may be susceptible to. One of them has
its root to the probabilistic nature of the decision algorithm used. As described in Section
4.2.4, access is granted with a probabity equal to a ratio (see, for example, Formula 4.2).
In this case, if the enumerator of the fraction is smaller than the denominator, implying
that the provider team “owes” less service to the consumer than the latter “owes” to it, this
probability is less that 1. The potential consumer may send consecutive CONN messages
to the access point, thus invoking the decision algorithm until its outcome is positive. For
example, if the value of the ratio is g���(, it will take roughly (�g attempts of the client until
she is finally granted access.

To combat such malicious behavior, an access point may apply some heuristics. For
example, the MAC address of the client may be cached so that consecutive attempts of the
client to gain access may be discovered.

Apart from attacks that can be avoided by low-level implementation tricks, there may
occur problems that are inherent to the families of decision algorithms used. For example,
the score-based decision algorithm described in Section 4.2.4.2 is not collusion-proof. That
is, teams may form groups that send false receipts to the TCA, reporting transactions that
have never taken place, in order to raise their credits in the system and enjoy internet access
without offering.

What is more, there are other secirity issues that need to be resolved, as they were

92

by design considered out of the scope of this work. For example, in the case of UPDT
and RCPT messages exchanged between a member and its team server, securing commu-
nication and the client’s membership with the team are not specified, nor have they been
implemented.

6.2 Implementation Issues

As far as the implementation of the P2PWNC scheme is concerned, improvements can
be achieved in issues concerning system funtionality and performance. Most of them are
related to the receipt repository module. As to the module’s performance, additional heuris-
tics applied to the maximum flow algorithm may be developed so that its operation is sped
up. Such is the gap heuristic [14], which may require some changes to the graph data
structure used.

As to the module’s functionality, taking a closer look to its implementation, one may
see that it may prove to be a single point of failure for the P2PWNC scheme, especially in
the case of the TCA. That is, in case of an error that will put the repository out of order (e.g.
network or hardware failure), the entities affected my scale from a few access points and
clients (decentralized case) to the whole P2PWNC system (centralized case). To eliminiate
this threat, building a distributed receipt database on top of other entities may be necessary.
For example, in the decentralized case, this database may be built on top of a team’s access
points. In the centralized case, there may be a grid of hosts that share the load of storing
the receipts and running the decision algorithm.

Entities making use of a distributed receipt repository should have a transparent view of
it. For example, consider the case of the repository built on top of a team’s access points.
Team members that wish to update their repository should sent their UPDT queries to a
well-known IP address which will be the entry point to the team server. The query will
then be processed by the distributed database module and the results will be sent back to
the client in a transparent fashion. As it seems, this receipt repository should support the
same operations as its non-distributed counterpart. That is, insertion, deletion and search
operations should be provided. These may be achieved by a form of a distributed hash
table, such as a Chord ring [27] access point arrangement (however, this structure is not
appropriate for range queries).

The trickiest part of all, though is running the decision function in a decentralized man-
ner. For this, a distributed version of the maximum flow algorithm needs to be developed.

93

A parallel and a distributed version of a push-relabel maximum flow algorithm is presented
in [22].

The red-black tree data structure that was presented in Section 4.2.3.2 may also be
extended. In particular, consider the case when a client visits an access point and sends a
bulk of RCPT messages to improve the chances of being served. This can be a source for
possible attacks. Namely, if the receipts sent by the client are fake and the access point’s
repository is full, these receipts may replace older but valid receipts. Thus, the transactions
history maintained by the team server of the visited access point is polluted. A heuristic
that can be applied to protect teams from such an attack is to finally accept this receipt set
only in case they actually yield a higher maximum flow value from the consumer to the
provider team.

In order to achieve this, a data structure that supports for versioning is required. There-
fore, in the case of an attack, the repository will be reverted to the state prior to the insertion
of the fake receipts. Data structures that can offer such versioning facilities are called per-

sistent. A study of persistence in data structures and a method of adding such functionality
to red-black trees is presented in [17].

6.3 Deployment Issues

The deployment issues discussed here mainly concern porting the P2PWNC to more plat-
forms. As of this writing, there are Linux-based implementations of all software compo-
nents. Also, there is a Java implementation of the P2PWNC client. However, the Java-
based client has not yet been tested on devices such as PDAs.

Our Java implementation also lacks traffic measuring facilities. In general, this func-
tionality is platform-dependent. The implementation of a traffic logging module for Linux
kernels was presented in Section 4.3.4. In MS Windows environments, the iphlpapi library
provides system calls which return management information per network interface. The
amnount of traffic over an interface is part of this information. To take advantage of this
functionality, either a Windows client should be written (possibly in C#) or this library
should be employed by the existing Java client via the Java Native Interface. A similar ap-
proach should be followed in order to incorporate traffic logging capabilities in the Linux
platform.

What is more, ECC functionality should be added to the Java-based client. Sun’s Java
Cryptography Extensions do not yet offer an ECDSA implementation, thus one should

94

resort to a third-party implementation, such as that provided by the Legion of the Bouncy
Castle [11].

As to the access point software, this runs mainly on top on Linux-based wireless access
points. In particular, it has been included in the firmware of the Linksys [4] WRT54GS
802.11g wireless router, which runs Linux 2.4. One of the drawbacks of the currently
used firmware is that it runs on a read-only file system (Compressed ROM File System
or cramfs). Migrating to a modern writable file system like JFFS2 (Journaling Flash File
System) [28] would solve this problem.

Finally, porting the receipt repository module (and consequently the TCA and team
server modules) in other platforms (such as Windows), is also possible, since it does not
depend striclty on any Linux-specific features.

6.4 Evaluation Issues

The P2PWNC scheme’s evaluation, either via simulations or via performance metrics has
been based on the assumption that user mobility is random. For example, the maxi-
mum flow algorithm has been tested on randomly generated receipt graphs and random
consumer-provider pairs. In practice, though, this may not usually be the case. There-
fore, more user mobility models need to be studied and applied to the system’s evaluation
methods.

95

7 Conclusion

In this work, the design, reference implementation and performance evaluation of of the
Peer-to-Peer Wireless Network Confederation protocol has been presented. Motivated by
the proliferation of WLAN and broadband access technologies and aiming at providing
ubiquitous internet access, a prototype WLAN roaming framework attempting to exploit
under-utilized Wi-Fi resources has been developed.

The P2PWNC is a WLAN roaming scheme based on the peer-to-peer paradigm and
built upon service reciprocity and peer autonomy. The system’s users team up in small
groups and pool their wireless access points. Each team needs to operate a number of
public access points, while, at the same time, their members may be roaming around access
points of other teams. Such teams are the peer entities of our scheme.

The design goals that were set for the P2PWNC scheme were those of simplicity,
ease of deployment, reduction of management complexity and peer autonomy and self-
organization. These goals were achieved by means of a simple, open protocol specification
which provides for autonomous agent behaviour and relaxed service accounting, and a
proof-of-concept implementation, running on top of resource constrained embedded de-
vices as well as desktop PCs.

Two deployment scenarios have been studied and developed. First, there is a centralized
operation mode, where history of transactions between peers is preserved by a trusted
central repository. Second, there is a decentralized mode of operation, in which no trusted
central authority exists and each peer keeps her own history of transactions.

In the P2PWNC scheme, users are identified by public/secret key pairs and membership
with a team is asserted via certificates. Proofs of transactions (receipts) are also secured
by cryptographic primitives. The P2PWNC public key infrastructure supports for both the
RSA and the Elliptic Curve cryptosystems. Since heavy use of cryptographic functions
takes place during the operation of the system, measurements have been performed so that
the two cryptosystems can be compared as to their computational needs. Since the protocol

96

is aimed at resource constrained devices, test have been performed on two platforms; an
embedded Linux-based wireless router and a more powerful AMD AthlonXP platform.
These tests have proved the applicability of the emerging ECC cryptography standards for
the needs of the P2PWNC scheme.

Given that service provisioning decisions are autonomous, the P2PWNC reference im-
plementation software architecture provides for a pluggable decision algorithm module.
Different users of the system may choose to implement their own means of deciding on
whether access should be granted to a visiting roamer. In this work, a maximum-flow
based decision algorithm has been implemented and evaluated in terms of processing time
and memory usage. Performance measurements have shown that it can be time- and space-
efficiently executed even on top of processing and memory constrained wireless access
points.

In conclusion, it is our strong belief that the P2PWNC scheme can help in fueling the
deployment of ubiquitous internet access and harness the unexploited Wi-Fi resources of
underutilized residential wireless hotspots. Also, it is expected that its deployment will be
assisted by the low cost of wireless equipment and the low risk and minor configuration
effort that its use incurs for hotspot operators.

97

References

[1] Athens Wireless Metropolitan Network,
http://www.awmn.gr.

[2] Dropbear SSH server and client,
http://matt.ucc.asn.au/dropbear/dropbear.html.

[3] Java Cryptography Extension (jce),
http://java.sun.com/products/jce/.

[4] Linksys company web site,
http://www.linksys.com.

[5] Linspot,
http://www.linspot.com/businessmodel.html.

[6] Netfilter/iptables project homepage,
http://www.netfilter.org.

[7] Openssl: The open source toolkit for SSL/TLS,
http://www.openssl.org.

[8] OpenWRT project,
http://openwrt.org.

[9] Seattle Wireless Broadband Community Network,
http://www.seattlewireless.net.

[10] Speakeasy WiFi NetShare Service,
http://www.speakeasy.net/netshare/.

98

[11] The Legion of the Bouncy Castle,
http://www.bouncycastle.org.

[12] G. M. Adel’son-Vel’skii and E. M. Landis, An algorithm for the organization of in-

formation., Soviet Mathematics Doklady 3 (1962), 1259–1263.

[13] Kostas G. Anagnostakis and Michael B. Greenwald, Exchange-based incentive mech-

anisms for peer-to-peer file sharing, ICDCS ’04: Proceedings of the 24th Interna-
tional Conference on Distributed Computing Systems (ICDCS’04) (Washington, DC,
USA), IEEE Computer Society, 2004, pp. 524–533.

[14] Boris V. Cherkassky and Andrew V. Goldberg, On implementing the push-relabel

method for the maximum flow problem, Algorithmica 19 (1997), no. 4, 390–410.

[15] D. Crocker, Standard for the format of ARPA Internet text messages, RFC 822, Inter-
net Engineering Task Force, August 1982.

[16] P. Overell D. Crocker, Ed., Augmented BNF for syntax specifications: ABNF, RFC
2234, Internet Engineering Task Force, November 1997.

[17] J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan, Making data structures persis-

tent, STOC ’86: Proceedings of the eighteenth annual ACM symposium on Theory
of computing (New York, NY, USA), ACM Press, 1986, pp. 109–121.

[18] E. C. Efstathiou and G. C. Polyzos, A self-managed scheme for free citywide wi-

fi, IEEE WoWMoM Autonomic Communications and Computing Workshop, June
2005.

[19] E. C. Efstathiou and G. C. Polyzos, Self-organized peering of wireless lan hotspots,
European Transactions on Telecommunications, (Special Issue on Sefl-Organization
in Mobile Networking) 16 (2005), no. 5.

[20] Standards for Efficient Cryptography Group, SEC 1: Elliptic Curve Cryptography,
Available from http://www.secg.org, September 2000.

[21] Standards for Efficient Cryptography Group, SEC 2: Recommended Elliptic Curve

Domain Parameters, Available from http://www.secg.org, September 2000.

99

[22] Andrew V. Goldberg and Robert E. Tarjan, A new approach to the maximum-flow

problem, Journal of the ACM 35 (1988), no. 4, 921–940, Preliminary version in Proc.
18th Annual ACM Symposium on the Theory of Computing, pages 136–146, 1986.

[23] L. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, IEEE-
FOCS, Proc. FOCS Conf (1978).

[24] Ed. S. Josefsson, The Base16, Base32, and Base64 Data Encodings, RFC 3548, In-
ternet Engineering Task Force, July 2003.

[25] Naouel Ben Salem, Jean-Pierre Hubaux, and Markus Jakobsson, Reputation-based

wi-fi deployment protocols and security analysis, WMASH ’04: Proceedings of the
2nd ACM international workshop on Wireless mobile applications and services on
WLAN hotspots (New York, NY, USA), ACM Press, 2004, pp. 29–40.

[26] Daniel Dominic Sleator and Robert Endre Tarjan, Self-adjusting binary search trees,
Journal of the ACM 32 (1985), no. 3, 652–686.

[27] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan,
Chord: A scalable Peer-To-Peer lookup service for internet applications, Proceedings
of the 2001 ACM SIGCOMM Conference, 2001, pp. 149–160.

[28] David Woodhouse, JFFS: The Journalling Flash File System, Ottawa Linux Sympo-
sium, RedHat Inc., 2001.

100

